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Counting holomorphic connections
with a prescribed Ricci tensor

Abstract. How many holomorphic connections are there with a prescribed
Ricci tensor? How many torsion-free holomorphic connections are there with
a prescribed Ricci tensor? These questions are answered by using the holo-
morphic version of the Cauchy–Kowalevski theorem.

1. Introduction. In the present paper, given a holomorphic tensor field
r of type (0, 2) on a complex manifold (M,J), we use the holomorphic
version of the Cauchy–Kowalevski theorem to describe all local holomorphic
solutions ∇ of the equation

Ric∇ = r(1)

with unknown holomorphic connection ∇ on M , where Ric∇ is the Ricci
tensor of ∇ (defined in Section 3). We also describe all local solutions of
the equation (1) with unknown torsion-free holomorphic connection ∇.
Similar problems have been studied in many papers, e.g. [1, 2, 3, 5, 6, 8, 9].
For example, in [6], the author studied the existence of local solutions ∇ of
the equation Ric∇ = r with unknown real analytical connection ∇ on a real
analytical manifoldM , where r is a symmetric real analytical tensor field of
type (0, 2) onM . In [3], using the Cauchy–Kowalevski theorem, the authors
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described all local solutions ∇ of the equation Ric∇ = 0 with unknown real
analytical connection ∇ on a real analytical manifold M . In [9], using the
Cauchy–Kowalevski theorem, the authors described all local solutions ∇ of
the equation Ric∇ = r with unknown real analytical (torsion free or not
torsion free) connection ∇ on a real analytical manifold M , where r is a
real analytical (not necessarily symmetric) tensor field of type (0, 2) on M .

2. The holomorphic version of the Cauchy–Kowalevski theorem.
We will use the notation (f)k := ∂f

∂zk
for a complex valued function f on a

domain endowed with a holomorphic coordinate system z1 = x1 + iy1, . . . ,

zn = xn + iyn, where ∂
∂zk

= 1
2

(
∂

∂xk − i ∂
∂yk

)
, k = 1, . . . , n.

The holomorphic version of the Cauchy–Kowalevski theorem can be found
in [4]. We need only the following roughly presented particular case of it.

Theorem 1. Suppose we have a system of differential equations

(U1)1 =H1
(
z1, . . . ,zn,U1, . . . ,UN ,(U1)2, . . . ,(U

1)n, . . . ,(U
N )2, . . . ,(U

N )n
)
,

(U2)1 =H2
(
z1, . . . ,zn,U1, . . . ,UN ,(U1)2, . . . ,(U

1)n, . . . ,(U
N )2, . . . ,(U

N )n
)
,

...

(UN )1 =HN
(
z1, . . . ,zn,U1, . . . ,UN ,(U1)2, . . . ,(U

1)n, . . . ,(U
N )2, . . . ,(U

N )n
)

with unknown C-valued functions U1, . . . , UN in a neighborhood of 0 ∈ Cn,
where H i, i = 1, . . . , N are holomorphic functions defined on some neighbor-
hood of (0, . . . , 0, φ1(0), . . . , φN (0), (φ1)2(0), . . . , (φ

1)n(0), . . . , (φ
N )2(0), . . . ,

(φN )n(0)) ∈ C(N+1)n for holomorphic functions φ1, . . . , φN given in a neigh-
borhood of 0 ∈ Cn−1.
Then the system has a unique solution (U1(z1, . . . ,zn), . . . ,UN (z1, . . . ,zn))
around 0 ∈ Cn that is holomorphic and satisfies the initial conditions

U i(0, z2, . . . , zn) = φi(z2, . . . , zn)

for i = 1, . . . , N .

3. Holomorphic connections. Consider a complex manifold (M,J) with
dimCM = n.
Let T 1,0M be the bundle of complex vectors of type (1, 0) on M , [7].
Denote by Γ(T 1,0M) the space of smooth (C∞) complex vector fields of
type (1, 0) on M .
A semi-connection onM is a C-bilinear map ∇ : Γ(T 1,0M)×Γ(T 1,0M) →

Γ(T 1,0M) such that

∇fWZ = f∇WZ

∇W fZ = W (f)Z + f∇WZ
(2)

for any W,Z ∈ Γ(T 1,0M) and f ∈ C∞(M,C), where ∇WZ := ∇(W,Z).
A semi-connection ∇ on M is called a holomorphic connection on M if
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∇V W is a (locally defined) holomorphic vector field on M for any (locally
defined) holomorphic vector fields V and W on M .
Let ∇ be a semi-connection on M . The curvature of ∇ is a C∞(M,C)-
trilinear map R∇ : Γ(T 1,0M)×Γ(T 1,0M) ×Γ(T 1,0M) → Γ(T 1,0M) defined
by

(3) R∇(U,W )Z = ∇U∇WZ −∇W∇UZ −∇[U,W ]Z .

It can be treated as the fibre-wise C-trilinear map

R∇ : T 1,0M ×M T 1,0M ×M T 1,0M → T 1,0M .

The Ricci tensor of ∇ is a C∞(M,C)-bilinear map Ric∇ : Γ(T 1,0M) ×
Γ(T 1,0M) → C∞(M,C) defined by

(4) Ric∇(W,Z)z = trC
(
T 1,0
z M ∋ v → R(v,Wz)Zz ∈ T 1,0

z M
)
.

The torsion of∇ is a C∞(M,C)-bilinear map T∇: Γ(T 1,0M)×Γ(T 1,0M) →
Γ(T 1,0M) defined by

T∇(W,Z) = ∇WZ −∇ZW − [W,Z] .

We say that ∇ is torsion-free if T∇ = 0.
Suppose z1 = x1+ iy1, . . . , zn = xn+ iyn is a holomorphic coordinate sys-
tem defined on some open subset U ⊂ M and let ∂

∂zk
= 1

2

(
∂

∂xk − i ∂
∂yk

)
, k =

1, . . . , n.
We write

(5) ∇ ∂

∂zj

∂

∂zk
=

n∑
i=1

Γi
jk

∂

∂zi

for some uniquely determined C-valued C∞ maps Γi
jk, i, j, k = 1, . . . , n. If

∇ is holomorphic, then so are Γi
jk. The maps Γ

i
jk are called the Christoffel

symbols of ∇ in the coordinates z1, . . . , zn.
For the Ricci tensor of ∇ we have

(6) Ric∇
(

∂

∂zi
,

∂

∂zj

)
=

n∑
k=1

[
(Γk

ij)k − (Γk
kj)i

]
+

n∑
k,l=1

[
Γl
ijΓ

k
kl − Γl

kjΓ
k
il

]
.

For the torsion of ∇ we have

(7) T∇
(

∂

∂zi
,

∂

∂zj

)
=

n∑
k=1

(Γk
ij − Γk

ji)
∂

∂zk
, i, j = 1, . . . , n .
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Clearly, ∇ is torsion-free if and only if its Christoffel symbols Γk
ij in any

coordinates z1, . . . , zn as above are symmetric in lower indices i and j.
Given a system of C∞-maps θkij : U → C, i, j, k = 1, . . . , n, there exists
a unique semi-connection θ on U with the Christoffel symbols θkij . If the
maps θkij are holomorphic, then so is θ. If the maps θ

k
ij are symmetric in

lower indices i and j, then θ is torsion-free.

4. How many holomorphic connections are there with a prescribed
Ricci tensor? Let (M,J) be a complex manifold with dimCM = n and
zo ∈ M be a point. Let z1 = x1 + iy1, . . . , zn = xn + iyn be a holomorphic
coordinate system defined on some neighborhood U of zo ∈ M with cen-
trum zo (i.e. zo is 0 in these coordinates). For simplicity and without loss
of generality we may assume that M = U ⊂ Cn is an open neighborhood of
zo = 0 ∈ Cn and z1 = x1+ iy1, . . . , zn = xn+ iyn are the usual holomorphic
coordinates.
Suppose r is a holomorphic tensor field of type (0, 2) onM . It means that

r : Γ(T 1,0M)×Γ(T 1,0M) → C∞(M,C) is a C∞(M,C)-bilinear map such that
r(U,W ) is holomorphic for any (locally defined) holomorphic vector fields U
andW onM . We show how many (locally defined) holomorphic connections
∇ exist such that Ric∇ = r around zo.
Set

rij = r

(
∂

∂zi
,

∂

∂zj

)
, i, j = 1, . . . , n .

Then rij : U → C are holomorphic. The condition (1) is equivalent to the
system of partial differential equations

(8)
n∑

k=1

[
(Γk

ij)k − (Γk
kj)i

]
=

n∑
k,l=1

[
Γl
kjΓ

k
il − Γl

ijΓ
k
kl

]
+ rij , i, j = 1, . . . , n .

Denote

(9) Λij =

n∑
k,l=1

[
Γl
kjΓ

k
il − Γl

ijΓ
k
kl

]
.

Then we can rewrite (8) in the full form

(10)
[
(Γ1

ij)1 + . . .+ (Γn
ij)n

]
−
[
(Γ1

1j)i + . . .+ (Γn
nj)i

]
= Λij + rij ,

i, j = 1, . . . , n. The system (10) can be transformed equivalently to a sys-
tem of the form as in the holomorphic version of the Cauchy–Kowalevski
theorem. Namely, the system (10) can be transformed equivalently to the
system

(Γn
nj)1 = −Λ1j − r1j + Λ′

1j , j = 1, . . . , n

(Γ1
ij)1 = Λij + rij − Λ′

ij , i = 2, . . . , n , j = 1, . . . , n ,
(11)
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where

Λ′
1j =

[
(Γ1

1j)1 + . . .+ (Γn
1j)n

]
−
[
(Γ1

1j)1 + . . .+ (Γn−1
n−1,j)1

]
, j = 1, . . . , n

and
Λ′
ij =

[
(Γ2

ij)2 + . . .+ (Γn
ij)n

]
−
[
(Γ1

1j)i + . . .+ (Γn
nj)i

]
,

i = 2, . . . , n, j = 1, . . . , n.
Indeed, for i = 1 and j = 1, . . . , n, we keep each derivative (Γn

nj)1 on
the left-hand side of the corresponding equation from the system (10). We
denote the sum of all remaining terms on the left-hand side of the corre-
sponding equation by Λ′

1j and move it to the right-hand side. Similarly, for
i > 1 and j = 1, . . . , n, we keep each derivative (Γ1

ij)1 on the left-hand side
of the corresponding equation from the system (10). We denote the sum of
all remaining terms on the left-hand side of the corresponding equation by
Λ′
ij and move it to the right-hand side. In this way we obtain the system
(11) being equivalent to (10). We can see that the first derivatives which
are on the left-hand sides of the system (11) are not presented in any terms
Λ′
ij on the right-hand sides.
We are now in position to prove the following holomorphic version of
Theorem 3.1 from [9].

Theorem 2. Let (M,J) be a complex manifold and dimCM = n and zo ∈
M be a point. Let n ≥ 2 and suppose r : Γ(T 1,0M)×Γ(T 1,0M) → C∞(M,C)
is a holomorphic tensor field of type (0, 2) on M (around zo). There exists a
locally defined around zo holomorphic connection ∇ with Ric∇ = r around
zo. Moreover, the family of all locally defined around zo holomorphic connec-
tions ∇ with Ric∇ = r around zo depends bijectively on n3−n2 holomorphic
functions of n variables and n2 holomorphic functions of n− 1 variables.

Proof. We have n+(n− 1)n = n2 Christoffel symbols Γk
ij on the left-hand

side of (11). Therefore, we have n3−n2 Christoffel symbols Γk
ij not presented

on the left-hand side of (11). We can choose them as arbitrary holomorphic
functions. We can also choose n2 arbitrary holomorphic functions of n− 1
variables to be the initial conditions. Then we can solve (11) by using the
holomorphic version of the Cauchy–Kowalevski theorem and obtain the rest
n2 Christoffel symbols. □

5. How many torsion-free holomorphic connections are there with
a prescribed Ricci tensor? Let (M,J) be a complex manifold, zo ∈ M
be a point and U be an open neighborhood of zo and suppose z1, . . . , zn
are holomorphic coordinates on U with centrum zo (i.e. zo is 0 in these
coordinates). For simplicity and without loss of generality we may assume
that M = U ⊂ Cn is an open neighborhood of zo = 0 ∈ Cn and z1 =
x1 + iy1, . . . , zn = xn + iyn are the usual holomorphic coordinates.
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Consider a torsion-free holomorphic connection∇ on U with the Christof-
fel symbols Γk

ij (with Γ
k
ij = Γk

ji) in the holomorphic coordinates z
1, . . . , zn.

We can decompose the Ricci tensor of ∇ into its symmetric and antisym-
metric parts. We obtain Ric∇ = s+ a, where

(12) s(W,Z) =
Ric∇(W,Z) +Ric∇(Z,W )

2
,

(13) a(W,Z) =
Ric∇(W,Z)−Ric∇(Z,W )

2
.

By (6) we have

(14) Ric∇
(

∂

∂zi
,

∂

∂zj

)
=

n∑
k=1

(Γk
ij)k − (Dj)i − Λij , i, j = 1, . . . , n ,

where Λij are given in (9) and

(15) Dj =
n∑

k=1

Γk
kj , j = 1, . . . , n .

Since ∇ is torsion-free, the portions
n∑

k=1

(Γk
ij)k and Λij are symmetric for

i and j. Hence

(16) aij = a

(
∂

∂zi
,

∂

∂zj

)
=

(Di)j − (Dj)i
2

, i, j = 1, . . . , n ,

sij = s

(
∂

∂zi
,

∂

∂zj

)
=

n∑
k=1

(Γk
ij)k −

(Dj)i + (Di)j
2

− Λij , i, j = 1, . . . , n .

Moreover, since ∇ is holomorphic, then a is a holomorphic 2-form, i.e.
∂-closed form of degree (2, 0), where d = ∂ + ∂ is the well-known decompo-
sition.

Proposition 1. The antisymmetric part a of the Ricci tensor Ric∇ of
a torsion-free holomorphic connection ∇ on a complex manifold M is
∂-closed.

Proof. Let α =
∑n

i=1Didz
i. The equation (16) can be equivalently rewrit-

ten into a = ∂α on U . Then ∂a = ∂∂α = 0 on U . □

We are now in position to prove the following holomorphic version of
Theorem 3.4 from [9].

Theorem 3. Let (M,J) be a complex manifold with dimCM = n and
zo ∈ M . Let n ≥ 2. Let r : Γ(T 1,0M)×Γ(T 1,0M) → C∞(M,C) be a defined
around zo holomorphic tensor field of type (0, 2) on M such that the (treated
as holomorphic 2-form) antisymmetric part a of r is ∂-closed. The family
of locally defined around zo torsion-free holomorphic connections ∇ with
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Ric∇ = r depends bijectively on n3−3n
2 holomorphic functions of n variables

and n2+n
2 holomorphic functions of n − 1 variables and one holomorphic

function vanishing in zo of n variables. In particular, there exists a locally
defined around zo torsion-free holomorphic connection ∇ with Ric∇ = r
around zo.

Proof. Without loss of generality we may assume that M = U ⊂ Cn is an
open neighborhood of zo = 0 ∈ Cn and z1 = x1 + iy1, . . . , zn = xn + iyn are
the usual holomorphic coordinates. Let s be the symmetric part of r and a
be the antisymmetric one. Let

aij = a

(
∂

∂zi
,

∂

∂zj

)
, sij = s

(
∂

∂zi
,

∂

∂zj

)
, rij = sij + aij .

By the (holomorphic) Poincare lemma, we (restricting U if necessary)
may write a = ∂α for some holomorphic 1-form α on U . Such α is unique
modulo ∂φ, where φ is a holomorphic map of n variables with φ(zo) = 0.
We can write α =

∑n
i=1Didz

i for some holomorphic maps Di : U → C.
So, we have given holomorphic functions rij , sij , aij , Di satisfying

(17) aij =
(Di)j − (Dj)i

2
, i, j = 1, . . . , n ,

and then

(18)
(Di)j + (Dj)i

2
= aij + (Dj)i

for i, j = 1, . . . , n.
Clearly, if a torsion-free holomorphic connection ∇ with the Christoffel
symbols Γi

jk with Γ
i
jk = Γi

kj satisfies the conditions

(19) Dj =

n∑
k=1

Γk
kj , j = 1, . . . , n ,

(20) aij =
(Di)j − (Dj)i

2
, i, j = 1, . . . , n ,

(21) sij =
n∑

k=1

(Γk
ij)k −

(Dj)i + (Di)j
2

− Λij , i, j = 1, . . . , n ,

where Λij is as in (9), then

(22) rij = aij + sij =

n∑
k=1

(Γk
ij)k − (Dj)i − Λij = Ric∇

(
∂

∂zi
,

∂

∂zj

)
,

i, j = 1, . . . , n, see (14), and then Ric∇ = r.
Conversely, if Ric∇ = r, then the above system of systems (19) and (20)
and (21) holds possibly with another Dj ’s, see the beginning of this section.
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Of course, the another Dj ’s are of the form Dj +(φ)j for some holomorphic
function φ (in n variables) vanishing in zo, see above.
So, it remains to describe all local (near zo) holomorphic solutions of
the system consisting of equations (19) for j = 1, . . . , n and (20) for i, j =
1, . . . , n and (21) for i, j = 1, . . . , n (with unknown torsion-free holomorphic
connection ∇ with Christoffel symbols Γi

jk with Γ
i
jk = Γi

kj).
But the conditions (20) for i, j = 1, . . . , n are satisfied because of (17).
Further, because of the symmetry in indices i and j, the system of equa-
tions (21) for i, j = 1, . . . , n is equivalent to the one for i and j with
1 ≤ i ≤ j ≤ n, i.e. to the system

sij =
n∑

k=1

(Γk
ij)k −

(Dj)i + (Di)j
2

− Λij

for i and j with 1 ≤ i ≤ j ≤ n, where Λij are defined in (9), i.e. (because of
(18)) to the system

(23) sij = (Γ1
ij)1 + (Γ2

ij)2 + . . .+ (Γn
ij)n − aij − (Dj)i − Λij

for i and j with 1 ≤ i ≤ j ≤ n.
If i = j = 1, because of (19), the equation (23) can be rewritten (equiva-
lently) as

(24) (Γ2
12)1 =

n∑
k=2

(Γk
11)k −

n∑
k=3

(Γk
k1)1 − Λ11 − r11 .

If (i, j) ̸= (1, 1), the equation (23) can be rewritten (equivalently) as

(25) (Γ1
ij)1 = −(Γ2

ij)2 − . . .− (Γn
ij)n + Λij + (Dj)i + rij .

Consequently, we get the following equivalent to (21) system of n(n+1)
2

equations

(26)

(Γ2
12)1 =

n∑
k=2

(Γk
11)k −

n∑
k=3

(Γk
1k)1 − Λ11 − r11 ,

(Γ1
1j)1 = −(Γ2

1j)2 − . . .− (Γn
1j)n + Λ1j + (D1)j + rj1 , j > 1 ,

(Γ1
ij)1 = −(Γ2

ij)2 − . . .− (Γn
ij)n + Λij + (Dj)i + rij , 1 < i ≤ j ≤ n .

Additionally, the Christoffel symbols satisfy (19), i.e.

D1 = Γ1
11 + Γ2

21 + . . .+ Γn
n1 ,

D2 = Γ1
12 + Γ2

22 + . . .+ Γn
n2 ,

...

Dn = Γ1
1n + Γ2

2n + . . .+ Γn
nn .

(27)
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It remains to describe all local (near zo) holomorphic solutions of the
above system of systems (26) and (27) with unknown Christoffel symbols
Γi
jk = Γi

kj , where (of course) the quantities r11,Dj , (D1)j+rj1 and (Dj)i+rij
are the given ones.
We can see that on the right-hand sides of (27) there are no repeated
Christoffel symbols. From the first equation of (27) we determine Γ1

11 =
D1 − Γ2

21 − . . .− Γn
n1 and then insert it into (26). From the next equations

we determine Γk
kk and then insert it into (26). Then the derivatives from

the left-hand side of (26) (after the substitutions) will not appear on the
right-hand side of (26) (after the substitutions). So, for the modified system
(26) (after the substitutions) we can apply the holomorphic version of the
Cauchy–Kowalevski theorem.
The number of holomorphic functions of n variables we can choose arbi-
trarily is the number of all Christoffel symbols minus the number of equa-
tions of (26) (after the substitutions) minus the number of equations of (27),
i.e. n (n+1)n

2 − n(n+1)
2 − n = n3−3n

2 . The number of holomorphic functions of
n− 1 variables we can choose arbitrarily is the number of equations of (26)
(after the substitutions) i.e. n

2+n
2 . □
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