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ABSTRACT. Let A and B be two non-unital reduced Banach *-algebras and
¢ : A — B be a vector space isomorphism. The two following statement
holds: If ¢ is a *-isomorphism, then ¢ is isometric (with respect to the C*-
norms), bipositive and ¢ maps some approximate identity of A onto an ap-
proximate identity of B. Conversely, any two of the later three properties
imply that ¢ is a x-isomorphism. Finally, we show that a unital and self-
adjoint spectral isometry between semi-simple Hermitian Banach algebras is
an x-isomorphism.

1. Preliminaries. Our objective under this heading is to describe the ba-
sic concepts of reduced Banach *-algebras and to try and synthesize some
results that are pertinent to the purposes of our paper.

A Banach *-algebra is a Banach algebra over the complex field (with
a norm denoted by |.||) together with a fixed involution denoted by *. A
Banach *-algebra is called Hermitian if and only if the spectrum of each self-
adjoint element h = h* in A is contained in the real line. A x-representation
of a Banach x-algebra A is an algebra homeomorphism 7 of A into the
algebra B(H) of all bounded operators on some Hilbert space H. On any
Banach x-algebra A, there is a maximum C*-pseudo-norm 4 which satisfies

(1.1) v4(a) = sup{||m(a)| : 7 is a *-representation of A}
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which is called the Gefland—Naimark pseudo-norm. The algebra A is said
to be reduced if v, is a norm. That is, if v, is well defined and {a €
A v,(a) = 0} = {0}. The class of reduced *-algebras incorporates a
wide class of Banach x-algebras. Indeed, any Hermitian and semi-simple
Banach x-algebra is reduced (including C*-algebras as a very special case).
An example of a reduced Banach algebra which is not hermitian is the
algebra of all complex-valued continuously differentiable mappings on [0, 1]
with pointwise definition of addition, scalar multiplication, product, and the
norm || f[| = [|fllec + [[flloc, Where [[f[lco = supsefo,yy [f(£)|- One more inter-
esting example is the group algebra L'(G), for some locally compact group
G. Tt is worth mentioning that L!(G) is Hermitian when G is commutative,
but not so in the general case.

In the remainder of this paper, all algebras considered are assumed to be
reduced. Therefore, the completion A of A with respect to the C*-norm YA
is a C*-algebra. At this juncture, we are to denote by A, the set of positive
elements as Ay = {>°}_aa* : a € A, n € N}. Clearly, the following
inclusion holds: Ag := {h?: h = h* € A} C A,. In general the inclusion is
strict, but if A is Hermitian or a C*-algebra, then As = A..

On a Banach *-algebra A , a linear functional p € A* (where A* is the
topological dual of A with respect to the norm ||.||) is positive if p(A4) C R4
(denoted p > 0) and a state if p > 0 and ||p|| = 1. The set of all states of A is
denoted by S 4. A linear mapping ¢ : A — B between two reduced Banach
x-algebras is said to be positive if (A1) C B4. Recall also that ¢ is called
unital if ¢(1) = 1, and it is said to be a Jordan homomorphism if ¢(a?) =
#(a)? for all a € A. Equivalently, the map ¢ is a Jordan homomorphism
if and only if ¢(ab + ba) = ¢(a)d(b) + ¢(b)p(a) for all @ and b in A. We
also recall that the map ¢ is said to be self-adjoint provided that ¢(a*) =
¢(a)* for all a € A. Self-adjoint Jordan homomorphisms are called Jordan
x-homomorphisms, and by a Jordan *-isomorphism, we mean a bijective
x-homomorphism.

2. Main results. In [6], Kadisson showed that every Jordan s*-isomor-
phism between two unital C*-algebras is isometric and bipositive and uni-
tal. Furthermore, the presence of any combination of two of the latter three
properties implies that ¢ is a x-isomorphism. These results have been gen-
eralized for non-unital C*-algebras in [10]. The first aim of this paper is to
show that the same result holds for non-unital reduced Banach x-algebras
with bounded approximate identities.

Recall that a bounded approximate identify of an Banach x-algebra A
with respect to the norm ||| is a net (€4 )aea in A such that sup,, e, < 0o and
lim, (|la — aeq|| + ||a — eqal|) = 0, for every a € A. We state the following:
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Theorem 2.1. Let A and B be reduced Banach x-algebras having bounded
approximate identities relative to the norm ||.| and ¢ : A — B be a vector
space isomorphism. If ¢ is a Jordan x-isomorphism, then ¢ is isometric
(with respect to the C*-norms), bipositive and ¢ maps some approximate
identity of A (relative to the norm vy, ) onto an approximate identity of B
(relative to the norm ~y).

Conversely, the presence of any combination of two of the latter three
properties implies that ¢ is a Jordan *-isomorphism.

To prove the main theorem, we need the following lemmas. The first
lemma is devoted to the existence of a bounded approximate identity relative
to the norm 7, such that its image by an *-isomorphism is a bounded
approximate identity for B. It is worth observing that this lemma does
not require the existence of a bounded approximate identity relative to the
norm .||

Lemma 2.2. Let A and B be two reduced Banach x-algebras. Let ¢ : A —
B be a Jordan x-isomorphism. There exists an approzimate identity (u;) ;e
in A such that its image (¢puj)jcy is an approximate identity for B.

Proof. Since ¢ is a Jordan x-isomorphism between two reduced algebras,
then it is contractive relative to v, and v, (see [8] Proposition 10.1. 4).
Extend ¢ by continuity to Jordan #-isomorphism ¢ : A — B of ¢ between
the two C*-algebras A and B. Accordlng to [10, Lemma 2.3], there exists an
approximate identity (hg)sea in A such that (d)hg) BeA is an approximate
identity for B. At this level, we proceed as in [8, Proposition 10.1.13]. Since
every element in A is a limit of a sequence in A, then, for all 8 € A, there
exist n € N and e € A satisfying " (ef — hg) < % Consequently, we might
safely assume that e; is self-adjoint and 7 L <.

Now, define u; = el and J = A x N ordered by defining j; = (f1,n1) >
Jo = (P2,m2) to mean i > P2 and ny > ng. It is easy to notice that u;
is an approximate identity of A. Similarly, by using the fact that gZ; is a
contraction, the net (¢u;);e satisfies v, (dpu; — qghg) < % and v, (ou;) < 1.
It follows also that (¢u;);cs is an approximate identity for B. g

We shall need also the following lemma, [3, Proposition 2.1], which shows
that if (eq)aca is a bounded approximate identity of a normed algebra A,

then it is also a bounded approximate identity for its completion A. We
give its proof for the sake of completeness.

Lemma 2.3. Let (A,v,) be a normed algebra and denote by A its comple-
tion with respect to the norm vy ,. Then every bounded approximate identity
(ea)aca of A is also a bounded approximate identity of A.
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Proof. Let a € A and (an) C Asuch that lim,_, v, (an —a) = 0. For any
n € N, we have

Yaleaa —a) < v, (eqa — eqan) + v, (eatn — an) + v, (an — a)
< yalea) Yula —an) + v, (eatn — an) + v, (an — a).
Using the fact that lim,, o v, (an — a) = limvy, (eqa, — a,) = 0, and the
(07

boundedness of (e,), we can find an integer n € N and 8 € A such that
v, (eaa—a) < €, whenever a > . This shows that lim, v, (eca—a) = 0. In
a similar way, we can also show that lim, v, (aeq — a) = 0. This completes
the proof. O

Now we show that every positive mapping ¢ between two reduced Banach
x-algebras is bounded with respect to the C*-norms. We begin with the
following;:

Lemma 2.4. Let A be a reduced Banach x-algebra with bounded approz-
imate identity {es} (with respect to the norm ||.||) and p : A — C be a
linear form. If p is positive, then it is bounded relative to the norm =,
and ||p||« < sup, pleacl), (here ||p||« denotes the norm of p relative to the
C*-norm v, ).

Proof. Let p be a positive linear form. Firstly, notice that p is continuous
with respect to the norm ||.|| and hermitian (i.e. p(z*) = p(x) for any x € A),
(see [4, Corollary 27.5]). Without loss of generality, assume that p # 0, since
p = 0 is certainly bounded. Suppose first that A is unital. We distinguish
two cases. If p is a state, then from the Gelfand—Naimark—Segal theorem (see
[4, Theorem 27.2]), there exists a cyclic *-representation 7 of .4 on a Hilbert
space H, with cyclic vector £ of norm 1 in H so that p(a) = (7(a)&,§). It
follows from the Cauchy—Schwartz inequality that

p(a)] < [[m(a)E]llI€]]
< |Im(@)lllig]* = lIm(a)]-

From Equation (1.1), we see that ||7(a)|| < 7, (a), which implies the bound-
edness of p with respect to v, and ||p[ls < 1 = p(1). If p is positive, let
q = p(1)~1p. It is obvious that ¢ is a state. Then g is bounded from above,
hence p is bounded and ||p||« < p(1). Finally, assume that A is non-unital.
Let p1(x+ Xe) = p(x) + Ak for any =+ Ae € A, where A, = A®C is the the
unitization of A and k = sup, p(eqe),). Since p is continuous with respect
of the norm ||.||, then [4, Proposition 21.5] implies that |p(x)|? < k p(zz*),
for all z € A. A similar reasoning as in the proof of [4, Proposition 21.7]
shows that p; is a positive linear functional of A, which coincides with p
on A. Therefore, ||p|ls < ||pell« < pe(e) = k. This completes the proof of
boundedness of p. O
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Lemma 2.5. Let A and B be two reduced Banach *-algebras such that A
has a bounded approzimate identity relative to the norm ||.||. Then, every
positive linear mapping ¢ : (A,v,) — (B,73) is bounded.

Proof. Let a € A with a = a*. By [9, Proposition 1.5.4], we have
Vs (¢(a)) = sup [po ¢(a)l.

pES[;,
By Lemma 2.4, p o ¢ is a bounded and positive linear functional, for any
p € Si. Accordingly

[podla)l < llpodll 74(a) < suppo dleacs) vala).

By keeping in mind that every p € Sy is continuous with respect to v, and
lp||« = 1, we obtain

[P o ¢eacy)l < [Ipll+vs(P(eacs)) = vis(d(eacs))-

Put 6 = sup,, v, (¢(eqae;,)) which is a constant independent of p. Hence, the
above inequality implies that

v5(P(a)) <6 v,(a), for any self-adjoint element in A.

Therefore, ¢ is continuous with respect to the C*-norms on the set of self-
adjoint elements. Since every element a € A is a linear combination of two
self-adjoint elements, the continuity of the involution and the positivity of
¢ implies that ¢ is continuous. The proof is thus complete. O

Now, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose ¢ is a Jordan *-isomorphism. By Lem-
ma 2.2, ¢ maps some approximate identity of A onto an approximate iden-
tity for B. Since ¢ and ¢~! are contractive, then v,(¢a) = v,(a),Va € A.
Hence, ¢ is isometric. The extension qb of ¢ is also a *- 1somorphlsm between
the two C*-algebras A and B. Thus, Theorem 3.1 of [10] may be applied to
show that ¢ is bipositive.
To prove the converse, we have three cases:

Case 1: Assume that ¢ is bipositive and maps some approximate identity
of A onto an approximate identity of 5. By Lemma 2.5, ¢ is bounded.
Extend ¢ by continuity to a bounded vector space isomorphism b: A—B
where A and B are the completlons with respect to the C*-norms of A and
B respectively. The set At of positive elements in a C'*-algebra such as Ais
closed and /l+ = A,. Hence by continuity QAS is bipositive. Now, Lemma 2.3
entails that qg is a bipositive vector space isomorphism which maps some
approximate identity of A onto an approximate identity of B. According to
[10, Theorem 3.1] , we infer that 6, and hence ¢, is a Jordan *-isomorphism.
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Case 2: If ¢ is b1p051t1ve and isometric. Extend ¢ by continuity to a
bijective isometry ¢ : A — B. A similar reasoning as in the first case
entails that A is also bipositive. Again, by [10, Theorem 3.1], ¢ is a Jordan
*-isomorphism.

Case 3: If ¢ is isometric and maps an approximate identity of A into an
approximate identity of 5. Then, similarly the extension ¢ of ¢ is isometric
and maps an approximate identity of A into an approximate identity of B.
It yields that ¢ is a Jordan x-isomorphism. This concludes the proof of the
theorem. O

As an application of Theorem 2.1, we characterize spectral isometries(l)
between semi-simple hermitian Banach %-algebras. Before presenting our
result, we recall the famous Ford’s square root lemma which will be crucial
for our purpose.

Lemma 2.6 ([2, 5]). Let A be a Banach x-algebra with a€A a=a" and
r(a) < 1. Then, there exists a unique v € A with 2x — 2% = a, r(x) < 1 and
x = x*.

Theorem 2.7. Let A and B be two hermitian semi-simple Banach x-alge-
bras and ¢ : A — B be a surjective and unital spectral isometry. If ¢ is
self-adjoint, then it is a Jordan x-isomorphism.

Proof. Let us first prove that ¢ is a vector space isomorphism. It is enough
to show that ¢ is injective. Let x € A be such that ¢(x) = 0. For y € A,
we obtain 7, (z +y) = rz(¢(x +y)) = r5(o(y)) = r,(y). Hence, by 1,
Theorem 5.3.1], = belongs to the radical of A which is zero. Thus z = 0
and ¢ is injective. Now, we show that ¢ is bipositive, that is ¢(Ay) = B;..
Let a € A be such that ||a]| < 1. By the spectral mapping theorem, we
know that o(1 — aa*) C RT. In addition, since A is semi-simple, this
fact yields ||1 — aa™|| < 1. Since ¢ is a unital spectral isometry, we have
r(¢(aa*) —1) < 1. By the square root lemma there exists x € A satisfying
r = z* and (1 — 2)? = ¢(aa*). In this manner, we have showed that
#(Ay) C By. Since ¢! is also a unital spectral isometry, by symmetry we
obtain ¢~ 1(By) C Ay or By C ¢(A,), which implies that ¢(A") = BT.
Hence, ¢ is unital and bipositive vector space isomorphism. Therefore, by
Theorem 2.1 we conclude that ¢ is a Jordan *-isomorphism. O

Remark 2.8. It is well known that every C*-algebra is a Hermitian semi-
simple Banach algebras. This makes the above theorem as an improvement
of [7, Proposition 2].

Now we prove the following:

Igpectral isometry means that r4(a) = rz(Ta),Va € A
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Corollary 2.9. Let A and B be Hermitian Banach x-algebras and ¢ : A —
B be a self-adjoint and unital bijective spectral isometry. Then, ¢ induce a
Jordan *-isomorphism ¢ : A/R(A) — B/R(B) where R(A) and R(B)
denote the Jacobson radical of A and B, respectively.

Proof. Let us first prove that ¢(R(A)) = R(B). To this end, we make
use of the characterization of the radical given by [1, Theorem 5.3.1]. Take
a € R(A) and y € B such that r ,(y) = 0. Choose = € A with ¢(z) =y. By
hypothesis 7, (x) = r,(y) = 0. Together, these yield

rg(d(a) +y) =rz(dla+x)) = TA(LL—I—x) =0.

So that ¢(a) € R(B). Therefore ¢(R(A)) C R(B). In the same way, we can
show that ¢~1(R(B)) C R(A) or equivalently R(B)) C ¢(R(A)). Thus, we
have showed that ¢(R(A)) = R(B). However, here the *-radical, which is
the intersection of the kernels of all x-representations of A, coincides with
the radical by [4, Corollary 33.13]. Hence by [4, Proposition 32.9], we have
A; = A/R(A) and By = B/R(B) are two unital semi-simple Hermitian
Banach algebras. Again, by [1, Theorem 3.1.5], we have o ,(a) = o4, (a)

for the coset a of a € A in A; and o,(b) = op,(b) for all b € B. Now
since, ¢(R(A)) = R(B) the mapping ¢ : A; —s By given by ¢(a) = T(a)
for every @ € A; is well defined. It is also clear that ¢ is a bijective self-
adjoint unital spectral isometry. Theorem 2.7 implies that & is a Jordan
*-isomorphism. O
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