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Vector space isomorphisms of non-unital
reduced Banach ∗-algebras

Abstract. Let A and B be two non-unital reduced Banach ∗-algebras and
φ : A −→ B be a vector space isomorphism. The two following statement
holds: If φ is a ∗-isomorphism, then φ is isometric (with respect to the C∗-
norms), bipositive and φ maps some approximate identity of A onto an ap-
proximate identity of B. Conversely, any two of the later three properties
imply that φ is a ∗-isomorphism. Finally, we show that a unital and self-
adjoint spectral isometry between semi-simple Hermitian Banach algebras is
an ∗-isomorphism.

1. Preliminaries. Our objective under this heading is to describe the ba-
sic concepts of reduced Banach ∗-algebras and to try and synthesize some
results that are pertinent to the purposes of our paper.

A Banach ∗-algebra is a Banach algebra over the complex field (with
a norm denoted by ‖.‖) together with a fixed involution denoted by ∗. A
Banach ∗-algebra is called Hermitian if and only if the spectrum of each self-
adjoint element h = h∗ in A is contained in the real line. A ∗-representation
of a Banach ∗-algebra A is an algebra homeomorphism π of A into the
algebra B(H) of all bounded operators on some Hilbert space H. On any
Banach ∗-algebra A, there is a maximum C∗-pseudo-norm γA which satisfies

(1.1) γA(a) = sup{‖π(a)‖ : π is a ∗-representation of A}
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which is called the Gefland–Naimark pseudo-norm. The algebra A is said
to be reduced if γA is a norm. That is, if γA is well defined and {a ∈
A : γA(a) = 0} = {0}. The class of reduced ∗-algebras incorporates a
wide class of Banach ∗-algebras. Indeed, any Hermitian and semi-simple
Banach ∗-algebra is reduced (including C∗-algebras as a very special case).
An example of a reduced Banach algebra which is not hermitian is the
algebra of all complex-valued continuously differentiable mappings on [0, 1]
with pointwise definition of addition, scalar multiplication, product, and the
norm ‖f‖ = ‖f‖∞+ ‖f ′‖∞, where ‖f‖∞ = supt∈[0,1] |f(t)|. One more inter-
esting example is the group algebra L1(G), for some locally compact group
G. It is worth mentioning that L1(G) is Hermitian when G is commutative,
but not so in the general case.

In the remainder of this paper, all algebras considered are assumed to be
reduced. Therefore, the completion Â of A with respect to the C∗-norm γA
is a C∗-algebra. At this juncture, we are to denote by A+ the set of positive
elements as A+ = {

∑n
k=1 aa

∗ : a ∈ A, n ∈ N}. Clearly, the following
inclusion holds: As := {h2 : h = h∗ ∈ A} ⊂ A+. In general the inclusion is
strict, but if A is Hermitian or a C∗-algebra, then As = A+.

On a Banach ∗-algebra A , a linear functional p ∈ A∗ (where A∗ is the
topological dual of A with respect to the norm ‖.‖) is positive if p(A+) ⊂ R+

(denoted p ≥ 0) and a state if p ≥ 0 and ‖p‖ = 1. The set of all states of A is
denoted by SA. A linear mapping φ : A −→ B between two reduced Banach
∗-algebras is said to be positive if φ(A+) ⊂ B+. Recall also that φ is called
unital if φ(1) = 1, and it is said to be a Jordan homomorphism if φ(a2) =
φ(a)2 for all a ∈ A. Equivalently, the map φ is a Jordan homomorphism
if and only if φ(ab + ba) = φ(a)φ(b) + φ(b)φ(a) for all a and b in A. We
also recall that the map φ is said to be self-adjoint provided that φ(a∗) =
φ(a)∗ for all a ∈ A. Self-adjoint Jordan homomorphisms are called Jordan
∗-homomorphisms, and by a Jordan ∗-isomorphism, we mean a bijective
∗-homomorphism.

2. Main results. In [6], Kadisson showed that every Jordan ∗-isomor-
phism between two unital C∗-algebras is isometric and bipositive and uni-
tal. Furthermore, the presence of any combination of two of the latter three
properties implies that φ is a ∗-isomorphism. These results have been gen-
eralized for non-unital C∗-algebras in [10]. The first aim of this paper is to
show that the same result holds for non-unital reduced Banach ∗-algebras
with bounded approximate identities.

Recall that a bounded approximate identify of an Banach ∗-algebra A
with respect to the norm ‖.‖ is a net (eα)α∈Λ inA such that supα eα <∞ and
limα (‖a− aeα‖+ ‖a− eαa‖) = 0, for every a ∈ A. We state the following:
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Theorem 2.1. Let A and B be reduced Banach ∗-algebras having bounded
approximate identities relative to the norm ‖.‖ and φ : A −→ B be a vector
space isomorphism. If φ is a Jordan ∗-isomorphism, then φ is isometric
(with respect to the C∗-norms), bipositive and φ maps some approximate
identity of A (relative to the norm γA) onto an approximate identity of B
(relative to the norm γB).
Conversely, the presence of any combination of two of the latter three
properties implies that φ is a Jordan ∗-isomorphism.

To prove the main theorem, we need the following lemmas. The first
lemma is devoted to the existence of a bounded approximate identity relative
to the norm γA such that its image by an ∗-isomorphism is a bounded
approximate identity for B. It is worth observing that this lemma does
not require the existence of a bounded approximate identity relative to the
norm ‖.‖.

Lemma 2.2. Let A and B be two reduced Banach ∗-algebras. Let φ : A −→
B be a Jordan ∗-isomorphism. There exists an approximate identity (uj)j∈J
in A such that its image (φuj)j∈J is an approximate identity for B.

Proof. Since φ is a Jordan ∗-isomorphism between two reduced algebras,
then it is contractive relative to γA and γB (see [8], Proposition 10.1.4).
Extend φ by continuity to Jordan ∗-isomorphism φ̂ : Â −→ B̂ of φ between
the two C∗-algebras Â and B̂. According to [10, Lemma 2.3], there exists an
approximate identity (hβ)β∈Λ in Â such that (φ̂hβ)β∈Λ is an approximate
identity for B̂. At this level, we proceed as in [8, Proposition 10.1.13]. Since
every element in Â is a limit of a sequence in A, then, for all β ∈ Λ, there
exist n ∈ N and eβn ∈ A satisfying γA(eβn−hβ) ≤ 1

n . Consequently, we might
safely assume that eβn is self-adjoint and γA(eβn) ≤ 1.

Now, define uj = eβn and J = Λ × N ordered by defining j1 = (β1, n1) ≥
j2 = (β2, n2) to mean β1 ≥ β2 and n1 ≥ n2. It is easy to notice that uj
is an approximate identity of A. Similarly, by using the fact that φ̂ is a
contraction, the net (φuj)j∈J satisfies γB(φuj − φ̂hβ) ≤ 1

n and γB(φuj) ≤ 1.
It follows also that (φuj)j∈J is an approximate identity for B. �

We shall need also the following lemma, [3, Proposition 2.1], which shows
that if (eα)α∈Λ is a bounded approximate identity of a normed algebra A,
then it is also a bounded approximate identity for its completion Â. We
give its proof for the sake of completeness.

Lemma 2.3. Let (A, γA) be a normed algebra and denote by Â its comple-
tion with respect to the norm γA. Then every bounded approximate identity
(eα)α∈Λ of A is also a bounded approximate identity of Â.
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Proof. Let a ∈ Â and (an) ⊂ A such that limn→∞ γA(an−a) = 0. For any
n ∈ N, we have

γA(eαa− a) ≤ γA(eαa− eαan) + γA(eαan − an) + γA(an − a)

≤ γA(eα) γA(a− an) + γA(eαan − an) + γA(an − a).

Using the fact that limn→∞ γA(an − a) = lim
α
γA(eαan − an) = 0, and the

boundedness of (eα), we can find an integer n ∈ N and β ∈ Λ such that
γA(eαa−a) < ε, whenever α ≥ β. This shows that limα γA(eαa−a) = 0. In
a similar way, we can also show that limα γA(aeα − a) = 0. This completes
the proof. �

Now we show that every positive mapping φ between two reduced Banach
∗-algebras is bounded with respect to the C∗-norms. We begin with the
following:

Lemma 2.4. Let A be a reduced Banach ∗-algebra with bounded approx-
imate identity {eα} (with respect to the norm ‖.‖) and p : A −→ C be a
linear form. If p is positive, then it is bounded relative to the norm γA
and ‖p‖∗ ≤ supα p(eαe

∗
α), (here ‖p‖∗ denotes the norm of p relative to the

C∗-norm γA).

Proof. Let p be a positive linear form. Firstly, notice that p is continuous
with respect to the norm ‖.‖ and hermitian (i.e. p(x∗) = p(x) for any x ∈ A),
(see [4, Corollary 27.5]). Without loss of generality, assume that p 6= 0, since
p ≡ 0 is certainly bounded. Suppose first that A is unital. We distinguish
two cases. If p is a state, then from the Gelfand–Naimark–Segal theorem (see
[4, Theorem 27.2]), there exists a cyclic ∗-representation π of A on a Hilbert
space H, with cyclic vector ξ of norm 1 in H so that p(a) = (π(a)ξ, ξ). It
follows from the Cauchy–Schwartz inequality that

|p(a)| ≤ ‖π(a)ξ‖‖ξ‖
≤ ‖π(a)‖‖ξ‖2 = ‖π(a)‖.

From Equation (1.1), we see that ‖π(a)‖ ≤ γA(a), which implies the bound-
edness of p with respect to γA and ‖p‖∗ ≤ 1 = p(1). If p is positive, let
q = p(1)−1p. It is obvious that q is a state. Then q is bounded from above,
hence p is bounded and ‖p‖∗ ≤ p(1). Finally, assume that A is non-unital.
Let p1(x+λe) = p(x)+λk for any x+λe ∈ Ae where Ae = A⊕C is the the
unitization of A and k = supα p(eαe

∗
α). Since p is continuous with respect

of the norm ‖.‖, then [4, Proposition 21.5] implies that |p(x)|2 ≤ k p(xx∗),
for all x ∈ A. A similar reasoning as in the proof of [4, Proposition 21.7]
shows that p1 is a positive linear functional of Ae which coincides with p
on A. Therefore, ‖p‖∗ ≤ ‖pe‖∗ ≤ pe(e) = k. This completes the proof of
boundedness of p. �
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Lemma 2.5. Let A and B be two reduced Banach ∗-algebras such that A
has a bounded approximate identity relative to the norm ‖.‖. Then, every
positive linear mapping φ : (A, γA) −→ (B, γB) is bounded.

Proof. Let a ∈ A with a = a∗. By [9, Proposition 1.5.4], we have

γB(φ(a)) = sup
p∈SB̂

|p ◦ φ(a)|.

By Lemma 2.4, p ◦ φ is a bounded and positive linear functional, for any
p ∈ SB̂. Accordingly

|p ◦ φ(a)| ≤ ‖p ◦ φ‖∗ γA(a) ≤ sup
α
p ◦ φ(eαe

∗
α) γA(a).

By keeping in mind that every p ∈ SB̂ is continuous with respect to γB and
‖p‖∗ = 1, we obtain

|p ◦ φ(eαe
∗
α)| ≤ ‖p‖∗γB(φ(eαe

∗
α)) = γB(φ(eαe

∗
α)).

Put θ = supα γA(φ(eαe
∗
α)) which is a constant independent of p. Hence, the

above inequality implies that

γB(φ(a)) ≤ θ γA(a), for any self-adjoint element in A.

Therefore, φ is continuous with respect to the C∗-norms on the set of self-
adjoint elements. Since every element a ∈ A is a linear combination of two
self-adjoint elements, the continuity of the involution and the positivity of
φ implies that φ is continuous. The proof is thus complete. �

Now, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose φ is a Jordan ∗-isomorphism. By Lem-
ma 2.2, φ maps some approximate identity of A onto an approximate iden-
tity for B. Since φ and φ−1 are contractive, then γB(φa) = γA(a),∀a ∈ A.
Hence, φ is isometric. The extension φ̂ of φ is also a ∗-isomorphism between
the two C∗-algebras Â and B̂. Thus, Theorem 3.1 of [10] may be applied to
show that φ is bipositive.

To prove the converse, we have three cases:
Case 1: Assume that φ is bipositive and maps some approximate identity
of A onto an approximate identity of B. By Lemma 2.5, φ is bounded.
Extend φ by continuity to a bounded vector space isomorphism φ̂ : Â −→ B̂
where Â and B̂ are the completions with respect to the C∗-norms of A and
B respectively. The set Â+ of positive elements in a C∗-algebra such as Â is
closed and Â+ = Âs. Hence by continuity φ̂ is bipositive. Now, Lemma 2.3
entails that φ̂ is a bipositive vector space isomorphism which maps some
approximate identity of Â onto an approximate identity of B̂. According to
[10, Theorem 3.1] , we infer that φ̂, and hence φ, is a Jordan ∗-isomorphism.
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Case 2: If φ is bipositive and isometric. Extend φ by continuity to a
bijective isometry φ̂ : Â −→ B̂. A similar reasoning as in the first case
entails that Â is also bipositive. Again, by [10, Theorem 3.1], φ is a Jordan
∗-isomorphism.
Case 3: If φ is isometric and maps an approximate identity of A into an
approximate identity of B. Then, similarly the extension φ̂ of φ is isometric
and maps an approximate identity of Â into an approximate identity of B̂.
It yields that φ is a Jordan ∗-isomorphism. This concludes the proof of the
theorem. �

As an application of Theorem 2.1, we characterize spectral isometries(1)
between semi-simple hermitian Banach ∗-algebras. Before presenting our
result, we recall the famous Ford’s square root lemma which will be crucial
for our purpose.

Lemma 2.6 ([2, 5]). Let A be a Banach ∗-algebra with a ∈ A, a = a∗ and
r(a) < 1. Then, there exists a unique x ∈ A with 2x−x2 = a, r(x) < 1 and
x = x∗.

Theorem 2.7. Let A and B be two hermitian semi-simple Banach ∗-alge-
bras and φ : A −→ B be a surjective and unital spectral isometry. If φ is
self-adjoint, then it is a Jordan ∗-isomorphism.

Proof. Let us first prove that φ is a vector space isomorphism. It is enough
to show that φ is injective. Let x ∈ A be such that φ(x) = 0. For y ∈ A,
we obtain rA(x + y) = rB(φ(x + y)) = rB(φ(y)) = rA(y). Hence, by [1,
Theorem 5.3.1], x belongs to the radical of A which is zero. Thus x = 0
and φ is injective. Now, we show that φ is bipositive, that is φ(A+) = B+.
Let a ∈ A be such that ‖a‖ < 1. By the spectral mapping theorem, we
know that σ(1 − aa∗) ⊂ R+. In addition, since A is semi-simple, this
fact yields ‖1 − aa∗‖ < 1. Since φ is a unital spectral isometry, we have
rB(φ(aa∗)− 1) < 1. By the square root lemma there exists x ∈ A satisfying
x = x∗ and (1 − x)2 = φ(aa∗). In this manner, we have showed that
φ(A+) ⊂ B+. Since φ−1 is also a unital spectral isometry, by symmetry we
obtain φ−1(B+) ⊂ A+ or B+ ⊂ φ(A+), which implies that φ(A+) = B+.
Hence, φ is unital and bipositive vector space isomorphism. Therefore, by
Theorem 2.1 we conclude that φ is a Jordan ∗-isomorphism. �

Remark 2.8. It is well known that every C∗-algebra is a Hermitian semi-
simple Banach algebras. This makes the above theorem as an improvement
of [7, Proposition 2].

Now we prove the following:

1Spectral isometry means that rA(a) = rB(Ta), ∀a ∈ A
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Corollary 2.9. Let A and B be Hermitian Banach ∗-algebras and φ : A −→
B be a self-adjoint and unital bijective spectral isometry. Then, φ induce a
Jordan ∗-isomorphism φ̃ : A/R(A) −→ B/R(B) where R(A) and R(B)
denote the Jacobson radical of A and B, respectively.

Proof. Let us first prove that φ(R(A)) = R(B). To this end, we make
use of the characterization of the radical given by [1, Theorem 5.3.1]. Take
a ∈ R(A) and y ∈ B such that rA(y) = 0. Choose x ∈ A with φ(x) = y. By
hypothesis rA(x) = rB(y) = 0. Together, these yield

rB(φ(a) + y) = rB(φ(a+ x)) = rA(a+ x) = 0.

So that φ(a) ∈ R(B). Therefore φ(R(A)) ⊂ R(B). In the same way, we can
show that φ−1(R(B)) ⊂ R(A) or equivalently R(B)) ⊂ φ(R(A)). Thus, we
have showed that φ(R(A)) = R(B). However, here the ∗-radical, which is
the intersection of the kernels of all ∗-representations of A, coincides with
the radical by [4, Corollary 33.13]. Hence by [4, Proposition 32.9], we have
A1 = A/R(A) and B1 = B/R(B) are two unital semi-simple Hermitian
Banach algebras. Again, by [1, Theorem 3.1.5], we have σA(a) = σA1(ā)
for the coset ā of a ∈ A in A1 and σB(b) = σB1(b̄) for all b ∈ B. Now
since, φ(R(A)) = R(B) the mapping φ̃ : A1 −→ B1 given by φ̃(ā) = T (a)

for every ā ∈ A1 is well defined. It is also clear that φ̃ is a bijective self-
adjoint unital spectral isometry. Theorem 2.7 implies that φ̃ is a Jordan
∗-isomorphism. �
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