doi: 10.1515/umcsmath-2015-0021

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

61 - 68

VOL. LXIX, NO. 2, 2015	SECTIO A
------------------------	----------

RACHID ELHARTI and MOHAMED MABROUK

Vector space isomorphisms of non-unital reduced Banach *-algebras

ABSTRACT. Let \mathcal{A} and \mathcal{B} be two non-unital reduced Banach *-algebras and $\phi : \mathcal{A} \longrightarrow \mathcal{B}$ be a vector space isomorphism. The two following statement holds: If ϕ is a *-isomorphism, then ϕ is isometric (with respect to the C^* -norms), bipositive and ϕ maps some approximate identity of \mathcal{A} onto an approximate identity of \mathcal{B} . Conversely, any two of the later three properties imply that ϕ is a *-isomorphism. Finally, we show that a unital and self-adjoint spectral isometry between semi-simple Hermitian Banach algebras is an *-isomorphism.

1. Preliminaries. Our objective under this heading is to describe the basic concepts of reduced Banach *-algebras and to try and synthesize some results that are pertinent to the purposes of our paper.

A Banach *-algebra is a Banach algebra over the complex field (with a norm denoted by $\|.\|$) together with a fixed involution denoted by *. A Banach *-algebra is called Hermitian if and only if the spectrum of each selfadjoint element $h = h^*$ in \mathcal{A} is contained in the real line. A *-representation of a Banach *-algebra \mathcal{A} is an algebra homeomorphism π of \mathcal{A} into the algebra B(H) of all bounded operators on some Hilbert space H. On any Banach *-algebra \mathcal{A} , there is a maximum C^* -pseudo-norm $\gamma_{\mathcal{A}}$ which satisfies

(1.1) $\gamma_{\mathcal{A}}(a) = \sup\{\|\pi(a)\| : \pi \text{ is a } *\text{-representation of } \mathcal{A}\}$

²⁰¹⁰ Mathematics Subject Classification. 15A86, 46L05, 47A12, 47B49. Key words and phrases. Reduced Banach algebras, preserving the spectrum.

which is called the Gefland–Naimark pseudo-norm. The algebra \mathcal{A} is said to be reduced if $\gamma_{\mathcal{A}}$ is a norm. That is, if $\gamma_{\mathcal{A}}$ is well defined and $\{a \in \mathcal{A} : \gamma_{\mathcal{A}}(a) = 0\} = \{0\}$. The class of reduced *-algebras incorporates a wide class of Banach *-algebras. Indeed, any Hermitian and semi-simple Banach *-algebra is reduced (including C^* -algebras as a very special case). An example of a reduced Banach algebra which is not hermitian is the algebra of all complex-valued continuously differentiable mappings on [0, 1]with pointwise definition of addition, scalar multiplication, product, and the norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$, where $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$. One more interesting example is the group algebra $L^1(G)$, for some locally compact group G. It is worth mentioning that $L^1(G)$ is Hermitian when G is commutative, but not so in the general case.

In the remainder of this paper, all algebras considered are assumed to be reduced. Therefore, the completion $\hat{\mathcal{A}}$ of \mathcal{A} with respect to the C^* -norm $\gamma_{\mathcal{A}}$ is a C^* -algebra. At this juncture, we are to denote by \mathcal{A}_+ the set of positive elements as $\mathcal{A}_+ = \{\sum_{k=1}^n aa^* : a \in \mathcal{A}, n \in \mathbb{N}\}$. Clearly, the following inclusion holds: $\mathcal{A}_s := \{h^2 : h = h^* \in \mathcal{A}\} \subset \mathcal{A}_+$. In general the inclusion is strict, but if \mathcal{A} is Hermitian or a C^* -algebra, then $\mathcal{A}_s = \mathcal{A}_+$.

On a Banach *-algebra \mathcal{A} , a linear functional $p \in \mathcal{A}^*$ (where \mathcal{A}^* is the topological dual of \mathcal{A} with respect to the norm $\|.\|$) is positive if $p(\mathcal{A}_+) \subset \mathbb{R}_+$ (denoted $p \geq 0$) and a state if $p \geq 0$ and $\|p\| = 1$. The set of all states of \mathcal{A} is denoted by $S_{\mathcal{A}}$. A linear mapping $\phi : \mathcal{A} \longrightarrow \mathcal{B}$ between two reduced Banach *-algebras is said to be positive if $\phi(\mathcal{A}_+) \subset \mathcal{B}_+$. Recall also that ϕ is called unital if $\phi(1) = 1$, and it is said to be a Jordan homomorphism if $\phi(a^2) = \phi(a)^2$ for all $a \in \mathcal{A}$. Equivalently, the map ϕ is a Jordan homomorphism if and only if $\phi(ab + ba) = \phi(a)\phi(b) + \phi(b)\phi(a)$ for all a and b in \mathcal{A} . We also recall that the map ϕ is said to be self-adjoint provided that $\phi(a^*) = \phi(a)^*$ for all $a \in \mathcal{A}$. Self-adjoint Jordan homomorphisms are called Jordan *-homomorphisms, and by a Jordan *-isomorphism, we mean a bijective *-homomorphism.

2. Main results. In [6], Kadisson showed that every Jordan *-isomorphism between two unital C^* -algebras is isometric and bipositive and unital. Furthermore, the presence of any combination of two of the latter three properties implies that ϕ is a *-isomorphism. These results have been generalized for non-unital C^* -algebras in [10]. The first aim of this paper is to show that the same result holds for non-unital reduced Banach *-algebras with bounded approximate identities.

Recall that a bounded approximate identify of an Banach *-algebra \mathcal{A} with respect to the norm $\|.\|$ is a net $(e_{\alpha})_{\alpha \in \Lambda}$ in \mathcal{A} such that $\sup_{\alpha} e_{\alpha} < \infty$ and $\lim_{\alpha} (\|a - ae_{\alpha}\| + \|a - e_{\alpha}a\|) = 0$, for every $a \in \mathcal{A}$. We state the following: **Theorem 2.1.** Let \mathcal{A} and \mathcal{B} be reduced Banach *-algebras having bounded approximate identities relative to the norm $\|.\|$ and $\phi : \mathcal{A} \longrightarrow \mathcal{B}$ be a vector space isomorphism. If ϕ is a Jordan *-isomorphism, then ϕ is isometric (with respect to the C*-norms), bipositive and ϕ maps some approximate identity of \mathcal{A} (relative to the norm $\gamma_{\mathcal{A}}$) onto an approximate identity of \mathcal{B} (relative to the norm $\gamma_{\mathcal{B}}$).

Conversely, the presence of any combination of two of the latter three properties implies that ϕ is a Jordan *-isomorphism.

To prove the main theorem, we need the following lemmas. The first lemma is devoted to the existence of a bounded approximate identity relative to the norm $\gamma_{\mathcal{A}}$ such that its image by an *-isomorphism is a bounded approximate identity for \mathcal{B} . It is worth observing that this lemma does not require the existence of a bounded approximate identity relative to the norm $\|.\|$.

Lemma 2.2. Let \mathcal{A} and \mathcal{B} be two reduced Banach *-algebras. Let $\phi : \mathcal{A} \longrightarrow \mathcal{B}$ be a Jordan *-isomorphism. There exists an approximate identity $(u_j)_{j \in J}$ in \mathcal{A} such that its image $(\phi u_j)_{j \in J}$ is an approximate identity for \mathcal{B} .

Proof. Since ϕ is a Jordan *-isomorphism between two reduced algebras, then it is contractive relative to $\gamma_{\mathcal{A}}$ and $\gamma_{\mathcal{B}}$ (see [8], Proposition 10.1.4). Extend ϕ by continuity to Jordan *-isomorphism $\hat{\phi} : \hat{\mathcal{A}} \longrightarrow \hat{\mathcal{B}}$ of ϕ between the two C^* -algebras $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$. According to [10, Lemma 2.3], there exists an approximate identity $(h_{\beta})_{\beta \in \Lambda}$ in $\hat{\mathcal{A}}$ such that $(\hat{\phi}h_{\beta})_{\beta \in \Lambda}$ is an approximate identity for $\hat{\mathcal{B}}$. At this level, we proceed as in [8, Proposition 10.1.13]. Since every element in $\hat{\mathcal{A}}$ is a limit of a sequence in \mathcal{A} , then, for all $\beta \in \Lambda$, there exist $n \in \mathbb{N}$ and $e_n^{\beta} \in \mathcal{A}$ satisfying $\gamma_{\mathcal{A}}(e_n^{\beta} - h_{\beta}) \leq \frac{1}{n}$. Consequently, we might safely assume that e_n^{β} is self-adjoint and $\gamma_{\mathcal{A}}(e_n^{\beta}) \leq 1$.

Now, define $u_j = e_n^\beta$ and $J = \Lambda \times \mathbb{N}$ ordered by defining $j_1 = (\beta_1, n_1) \ge j_2 = (\beta_2, n_2)$ to mean $\beta_1 \ge \beta_2$ and $n_1 \ge n_2$. It is easy to notice that u_j is an approximate identity of \mathcal{A} . Similarly, by using the fact that $\hat{\phi}$ is a contraction, the net $(\phi u_j)_{j \in J}$ satisfies $\gamma_{\mathcal{B}}(\phi u_j - \hat{\phi}h_\beta) \le \frac{1}{n}$ and $\gamma_{\mathcal{B}}(\phi u_j) \le 1$. It follows also that $(\phi u_j)_{j \in J}$ is an approximate identity for \mathcal{B} .

We shall need also the following lemma, [3, Proposition 2.1], which shows that if $(e_{\alpha})_{\alpha \in \Lambda}$ is a bounded approximate identity of a normed algebra \mathcal{A} , then it is also a bounded approximate identity for its completion $\hat{\mathcal{A}}$. We give its proof for the sake of completeness.

Lemma 2.3. Let $(\mathcal{A}, \gamma_{\mathcal{A}})$ be a normed algebra and denote by $\hat{\mathcal{A}}$ its completion with respect to the norm $\gamma_{\mathcal{A}}$. Then every bounded approximate identity $(e_{\alpha})_{\alpha \in \Lambda}$ of \mathcal{A} is also a bounded approximate identity of $\hat{\mathcal{A}}$. **Proof.** Let $a \in \mathcal{A}$ and $(a_n) \subset \mathcal{A}$ such that $\lim_{n\to\infty} \gamma_{\mathcal{A}}(a_n - a) = 0$. For any $n \in \mathbb{N}$, we have

$$\begin{aligned} \gamma_{\mathcal{A}}(e_{\alpha}a-a) &\leq \gamma_{\mathcal{A}}(e_{\alpha}a-e_{\alpha}a_{n}) + \gamma_{\mathcal{A}}(e_{\alpha}a_{n}-a_{n}) + \gamma_{\mathcal{A}}(a_{n}-a) \\ &\leq \gamma_{\mathcal{A}}(e_{\alpha}) \ \gamma_{\mathcal{A}}(a-a_{n}) + \gamma_{\mathcal{A}}(e_{\alpha}a_{n}-a_{n}) + \gamma_{\mathcal{A}}(a_{n}-a). \end{aligned}$$

Using the fact that $\lim_{n\to\infty} \gamma_{\mathcal{A}}(a_n - a) = \lim_{\alpha} \gamma_{\mathcal{A}}(e_{\alpha}a_n - a_n) = 0$, and the boundedness of (e_{α}) , we can find an integer $n \in \mathbb{N}$ and $\beta \in \Lambda$ such that $\gamma_{\mathcal{A}}(e_{\alpha}a - a) < \epsilon$, whenever $\alpha \geq \beta$. This shows that $\lim_{\alpha} \gamma_{\mathcal{A}}(e_{\alpha}a - a) = 0$. In a similar way, we can also show that $\lim_{\alpha} \gamma_{\mathcal{A}}(ae_{\alpha} - a) = 0$. This completes the proof.

Now we show that every positive mapping ϕ between two reduced Banach *-algebras is bounded with respect to the C^* -norms. We begin with the following:

Lemma 2.4. Let \mathcal{A} be a reduced Banach *-algebra with bounded approximate identity $\{e_{\alpha}\}$ (with respect to the norm $\|.\|$) and $p : \mathcal{A} \longrightarrow \mathbb{C}$ be a linear form. If p is positive, then it is bounded relative to the norm $\gamma_{\mathcal{A}}$ and $\|p\|_* \leq \sup_{\alpha} p(e_{\alpha}e_{\alpha}^*)$, (here $\|p\|_*$ denotes the norm of p relative to the C^* -norm $\gamma_{\mathcal{A}}$).

Proof. Let p be a positive linear form. Firstly, notice that p is continuous with respect to the norm ||.|| and hermitian (i.e. $p(x^*) = \overline{p(x)}$ for any $x \in \mathcal{A}$), (see [4, Corollary 27.5]). Without loss of generality, assume that $p \neq 0$, since $p \equiv 0$ is certainly bounded. Suppose first that \mathcal{A} is unital. We distinguish two cases. If p is a state, then from the Gelfand–Naimark–Segal theorem (see [4, Theorem 27.2]), there exists a cyclic *-representation π of \mathcal{A} on a Hilbert space H, with cyclic vector ξ of norm 1 in H so that $p(a) = (\pi(a)\xi, \xi)$. It follows from the Cauchy–Schwartz inequality that

$$|p(a)| \le ||\pi(a)\xi|| ||\xi|| \le ||\pi(a)|| ||\xi||^2 = ||\pi(a)||.$$

From Equation (1.1), we see that $||\pi(a)|| \leq \gamma_{\mathcal{A}}(a)$, which implies the boundedness of p with respect to $\gamma_{\mathcal{A}}$ and $||p||_* \leq 1 = p(1)$. If p is positive, let $q = p(1)^{-1}p$. It is obvious that q is a state. Then q is bounded from above, hence p is bounded and $||p||_* \leq p(1)$. Finally, assume that \mathcal{A} is non-unital. Let $p_1(x + \lambda e) = p(x) + \lambda k$ for any $x + \lambda e \in \mathcal{A}_e$ where $\mathcal{A}_e = \mathcal{A} \oplus \mathbb{C}$ is the the unitization of \mathcal{A} and $k = \sup_{\alpha} p(e_{\alpha}e_{\alpha}^*)$. Since p is continuous with respect of the norm ||.||, then [4, Proposition 21.5] implies that $|p(x)|^2 \leq k p(xx^*)$, for all $x \in \mathcal{A}$. A similar reasoning as in the proof of [4, Proposition 21.7] shows that p_1 is a positive linear functional of \mathcal{A}_e which coincides with pon \mathcal{A} . Therefore, $||p||_* \leq ||p_e||_* \leq p_e(e) = k$. This completes the proof of boundedness of p. **Lemma 2.5.** Let \mathcal{A} and \mathcal{B} be two reduced Banach *-algebras such that \mathcal{A} has a bounded approximate identity relative to the norm $\|.\|$. Then, every positive linear mapping $\phi : (\mathcal{A}, \gamma_{\mathcal{A}}) \longrightarrow (\mathcal{B}, \gamma_{\mathcal{B}})$ is bounded.

Proof. Let $a \in \mathcal{A}$ with $a = a^*$. By [9, Proposition 1.5.4], we have

$$\gamma_{\mathcal{B}}(\phi(a)) = \sup_{p \in S_{\hat{\mathcal{B}}}} |p \circ \phi(a)|.$$

By Lemma 2.4, $p \circ \phi$ is a bounded and positive linear functional, for any $p \in S_{\hat{\mathcal{B}}}$. Accordingly

$$|p \circ \phi(a)| \le \|p \circ \phi\|_* \gamma_{\mathcal{A}}(a) \le \sup_{\alpha} p \circ \phi(e_{\alpha} e_{\alpha}^*) \gamma_{\mathcal{A}}(a).$$

By keeping in mind that every $p \in S_{\hat{\mathcal{B}}}$ is continuous with respect to $\gamma_{\mathcal{B}}$ and $\|p\|_* = 1$, we obtain

$$|p \circ \phi(e_{\alpha}e_{\alpha}^*)| \le \|p\|_* \gamma_{\mathcal{B}}(\phi(e_{\alpha}e_{\alpha}^*)) = \gamma_{\mathcal{B}}(\phi(e_{\alpha}e_{\alpha}^*)).$$

Put $\theta = \sup_{\alpha} \gamma_{\mathcal{A}}(\phi(e_{\alpha}e_{\alpha}^*))$ which is a constant independent of p. Hence, the above inequality implies that

 $\gamma_{\mathcal{B}}(\phi(a)) \leq \theta \gamma_{\mathcal{A}}(a)$, for any self-adjoint element in \mathcal{A} .

Therefore, ϕ is continuous with respect to the C^* -norms on the set of selfadjoint elements. Since every element $a \in \mathcal{A}$ is a linear combination of two self-adjoint elements, the continuity of the involution and the positivity of ϕ implies that ϕ is continuous. The proof is thus complete.

Now, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose ϕ is a Jordan *-isomorphism. By Lemma 2.2, ϕ maps some approximate identity of \mathcal{A} onto an approximate identity for \mathcal{B} . Since ϕ and ϕ^{-1} are contractive, then $\gamma_{\mathcal{B}}(\phi a) = \gamma_{\mathcal{A}}(a), \forall a \in \mathcal{A}$. Hence, ϕ is isometric. The extension $\hat{\phi}$ of ϕ is also a *-isomorphism between the two C^* -algebras $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$. Thus, Theorem 3.1 of [10] may be applied to show that ϕ is bipositive.

To prove the converse, we have three cases:

Case 1: Assume that ϕ is bipositive and maps some approximate identity of \mathcal{A} onto an approximate identity of \mathcal{B} . By Lemma 2.5, ϕ is bounded. Extend ϕ by continuity to a bounded vector space isomorphism $\hat{\phi} : \hat{\mathcal{A}} \longrightarrow \hat{\mathcal{B}}$ where $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$ are the completions with respect to the C^* -norms of \mathcal{A} and \mathcal{B} respectively. The set $\hat{\mathcal{A}}^+$ of positive elements in a C^* -algebra such as $\hat{\mathcal{A}}$ is closed and $\hat{\mathcal{A}}_+ = \hat{\mathcal{A}}_s$. Hence by continuity $\hat{\phi}$ is bipositive. Now, Lemma 2.3 entails that $\hat{\phi}$ is a bipositive vector space isomorphism which maps some approximate identity of $\hat{\mathcal{A}}$ onto an approximate identity of $\hat{\mathcal{B}}$. According to [10, Theorem 3.1], we infer that $\hat{\phi}$, and hence ϕ , is a Jordan *-isomorphism. **Case 2:** If ϕ is bipositive and isometric. Extend ϕ by continuity to a bijective isometry $\hat{\phi} : \hat{\mathcal{A}} \longrightarrow \hat{\mathcal{B}}$. A similar reasoning as in the first case entails that $\hat{\mathcal{A}}$ is also bipositive. Again, by [10, Theorem 3.1], ϕ is a Jordan *-isomorphism.

Case 3: If ϕ is isometric and maps an approximate identity of \mathcal{A} into an approximate identity of \mathcal{B} . Then, similarly the extension $\hat{\phi}$ of ϕ is isometric and maps an approximate identity of $\hat{\mathcal{A}}$ into an approximate identity of $\hat{\mathcal{B}}$. It yields that ϕ is a Jordan *-isomorphism. This concludes the proof of the theorem.

As an application of Theorem 2.1, we characterize spectral isometries $(^1)$ between semi-simple hermitian Banach *-algebras. Before presenting our result, we recall the famous Ford's square root lemma which will be crucial for our purpose.

Lemma 2.6 ([2, 5]). Let \mathcal{A} be a Banach *-algebra with $a \in \mathcal{A}$, $a = a^*$ and r(a) < 1. Then, there exists a unique $x \in \mathcal{A}$ with $2x - x^2 = a$, r(x) < 1 and $x = x^*$.

Theorem 2.7. Let \mathcal{A} and \mathcal{B} be two hermitian semi-simple Banach *-algebras and $\phi : \mathcal{A} \longrightarrow \mathcal{B}$ be a surjective and unital spectral isometry. If ϕ is self-adjoint, then it is a Jordan *-isomorphism.

Proof. Let us first prove that ϕ is a vector space isomorphism. It is enough to show that ϕ is injective. Let $x \in \mathcal{A}$ be such that $\phi(x) = 0$. For $y \in \mathcal{A}$, we obtain $r_{\mathcal{A}}(x+y) = r_{\mathcal{B}}(\phi(x+y)) = r_{\mathcal{B}}(\phi(y)) = r_{\mathcal{A}}(y)$. Hence, by [1, Theorem 5.3.1], x belongs to the radical of \mathcal{A} which is zero. Thus x = 0and ϕ is injective. Now, we show that ϕ is bipositive, that is $\phi(\mathcal{A}_+) = \mathcal{B}_+$. Let $a \in \mathcal{A}$ be such that ||a|| < 1. By the spectral mapping theorem, we know that $\sigma(1 - aa^*) \subset \mathbb{R}^+$. In addition, since \mathcal{A} is semi-simple, this fact yields $||1 - aa^*|| < 1$. Since ϕ is a unital spectral isometry, we have $r_{\mathcal{B}}(\phi(aa^*) - 1) < 1$. By the square root lemma there exists $x \in \mathcal{A}$ satisfying $x = x^*$ and $(1 - x)^2 = \phi(aa^*)$. In this manner, we have showed that $\phi(\mathcal{A}_+) \subset \mathcal{B}_+$. Since ϕ^{-1} is also a unital spectral isometry, by symmetry we obtain $\phi^{-1}(\mathcal{B}_+) \subset \mathcal{A}_+$ or $\mathcal{B}_+ \subset \phi(\mathcal{A}_+)$, which implies that $\phi(\mathcal{A}^+) = \mathcal{B}^+$. Hence, ϕ is unital and bipositive vector space isomorphism. Therefore, by Theorem 2.1 we conclude that ϕ is a Jordan *-isomorphism.

Remark 2.8. It is well known that every C^* -algebra is a Hermitian semisimple Banach algebras. This makes the above theorem as an improvement of [7, Proposition 2].

Now we prove the following:

¹Spectral isometry means that $r_{\mathcal{A}}(a) = r_{\mathcal{B}}(Ta), \forall a \in \mathcal{A}$

Corollary 2.9. Let \mathcal{A} and \mathcal{B} be Hermitian Banach *-algebras and $\phi : \mathcal{A} \longrightarrow \mathcal{B}$ be a self-adjoint and unital bijective spectral isometry. Then, ϕ induce a Jordan *-isomorphism $\tilde{\phi} : \mathcal{A}/R(\mathcal{A}) \longrightarrow \mathcal{B}/R(\mathcal{B})$ where $R(\mathcal{A})$ and $R(\mathcal{B})$ denote the Jacobson radical of \mathcal{A} and \mathcal{B} , respectively.

Proof. Let us first prove that $\phi(R(\mathcal{A})) = R(\mathcal{B})$. To this end, we make use of the characterization of the radical given by [1, Theorem 5.3.1]. Take $a \in R(\mathcal{A})$ and $y \in \mathcal{B}$ such that $r_{\mathcal{A}}(y) = 0$. Choose $x \in \mathcal{A}$ with $\phi(x) = y$. By hypothesis $r_{\mathcal{A}}(x) = r_{\mathcal{B}}(y) = 0$. Together, these yield

$$r_{\mathcal{B}}(\phi(a)+y)=r_{\mathcal{B}}(\phi(a+x))=r_{\mathcal{A}}(a+x)=0.$$

So that $\phi(a) \in R(\mathcal{B})$. Therefore $\phi(R(\mathcal{A})) \subset R(\mathcal{B})$. In the same way, we can show that $\phi^{-1}(R(\mathcal{B})) \subset R(\mathcal{A})$ or equivalently $R(\mathcal{B})) \subset \phi(R(\mathcal{A}))$. Thus, we have showed that $\phi(R(\mathcal{A})) = R(\mathcal{B})$. However, here the *-radical, which is the intersection of the kernels of all *-representations of \mathcal{A} , coincides with the radical by [4, Corollary 33.13]. Hence by [4, Proposition 32.9], we have $\mathcal{A}_1 = \mathcal{A}/R(\mathcal{A})$ and $\mathcal{B}_1 = \mathcal{B}/R(\mathcal{B})$ are two unital semi-simple Hermitian Banach algebras. Again, by [1, Theorem 3.1.5], we have $\sigma_{\mathcal{A}}(a) = \sigma_{\mathcal{A}_1}(\bar{a})$ for the coset \bar{a} of $a \in \mathcal{A}$ in \mathcal{A}_1 and $\sigma_{\mathcal{B}}(b) = \sigma_{\mathcal{B}_1}(\bar{b})$ for all $b \in \mathcal{B}$. Now since, $\phi(R(\mathcal{A})) = R(\mathcal{B})$ the mapping $\tilde{\phi} : \mathcal{A}_1 \longrightarrow \mathcal{B}_1$ given by $\tilde{\phi}(\bar{a}) = \overline{T(a)}$ for every $\bar{a} \in \mathcal{A}_1$ is well defined. It is also clear that $\tilde{\phi}$ is a bijective selfadjoint unital spectral isometry. Theorem 2.7 implies that $\tilde{\phi}$ is a Jordan *-isomorphism.

References

- Aupetit, B., Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. Lond. Math. Soc. 62 (2000), 917–924.
- [2] Bonsall, F. F., Stirling, D. S. G., Square roots in Banach *-algebras, Glasg. Math. J. 13 (1972), 74–74.
- [3] Dixon, P. G., Approximate identities in normed algebras, Proc. Lond. Math. Soc. 26 (3) (1973), 485–496.
- [4] Doran R. S., Belfi, V. A., Characterizations of C*-algebras. The Gelfand-Naimark Theorems, Marcel Dekker, New York, 1986.
- [5] Ford, J. W. M., A square root lemma for Banach (*)-algebras, J. Lond. Math. Soc. 42 (1) (1967), 521–522.
- [6] Kadisson, R. V., Isometries of operator algebras, Ann. of Math. 54 (2) (1951), 325– 338.
- Martin, M., Towards a non-selfadjoint version of Kadison's theorem, Ann. Math. Inform. 32 (2005), 87–94.
- [8] Palmer, T. W., Banach Algebras and the General Theory of *-Algebras. *-Algebras, Vol. II, Cambridge University Press, Cambridge, 2001.
- [9] Sakai, S., C^{*}-algebras and W^{*}-algebras, Springer-Verlag, New York-Berlin, 1971.
- [10] Ylinen, K., Vector space isomorphisms of C*-algebras, Studia Math. 46 (1973), 31– 34.

Rachid ElHarti Department of Mathematics Faculty of Applied Sciences Umm Al-qura University 21955 Makkah Saudi Arabia

Department of Mathematics and Computer Sciences Faculty of Sciences and Techniques University Hassan I, BP 577. Settat Morocco (Permanent address) e-mail: relharti@gmail.com

Received September 6, 2014

Mohamed Mabrouk Department of Mathematics Faculty of Applied Sciences Umm Al-qura University 21955 Makkah Saudi Arabia

Department of Mathematics Faculty of Sciences of Gabès University of Gabès, Cité Erriadh 6072 Zrig, Gabès Tunisia (Permanent address) e-mail: msmabrouk@uqu.edu.sa