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Location of the critical points
of certain polynomials

Abstract. Let D denote the unit disk {z : |z| < 1} in the complex plane C.
In this paper, we study a family of polynomials P with only one zero lying
outside D. We establish criteria for P to satisfy implying that each of P and
P ′ has exactly one critical point outside D.

1. Introduction. Let P be a polynomial in the complex plane C. We
denote the degree of P by degP . We say that α is a critical point of P
if P ′(α) = 0. Throughout this paper, if not otherwise stated, when we
talk about the number of zeros of a polynomial in a domain, we mean the
number of zeros counting multiplicities. As the critical points of P are the
zeros of P ′, this applies also to the number of critical points. There are
several known results involving the critical points of polynomials. The most
classical one is the Gauss–Lucas Theorem, [8, p. 25].

Gauss–Lucas Theorem. Let P be a polynomial of degree n with zeros
z1, z2, . . . , zn, not necessarily distinct. The zeros of the derivative P ′ lie in
the convex hull of the set {z1, z2, . . . , zn}.

Another classical theorem concerning the location of the critical points is
the Walsh’s Two-Circle Theorem, [9].
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Walsh’s Two-Circle Theorem. Let P be a polynomial of degree n ≥ 2.
Let n1 and n2 be positive integers with n1 + n2 = n, let α1 and α2 be two
distinct complex numbers, and let r1, r2 be positive real numbers. Let C1 =
{z : |z − α1| ≤ r1}, C2 = {z : |z − α2| ≤ r2}, and let C = {z : |z − α0| ≤ r},
where

α0 =
α2n1 + α1n2

n
and r =

n1r2 + n2r1
n

.

Assume that P has n1 and n2 zeros in C1 and C2 respectively. Then all
critical points of P lie in C1 ∪ C2 ∪ C.

In this paper we are interested in the location of the critical points of a
certain type of polynomials. If P has a zero lying outside the closed unit
disk D = {z ∈ C : |z| ≤ 1}, by the Gauss–Lucas Theorem, it follows that
the zeros of its derivative are in the convex hull of the zeros of P , which
includes a region outside D. But we do not know how many zeros of P ′

are outside D. We may ask the question of under what conditions does P
have only one critical point outside the closed unit disk? A consequence of
Walsh’s theorem gives a partial answer to the question. That is,

Theorem ([5, see (4.1.1) on p. 117]). If S ∈ {C1, C2, C} is a disjoint com-
ponent of C1 ∪ C2 ∪ C, then S contains exactly

n(S) =

{
nj − 1 if S = Cj

1 if S = C

critical points of P .

Let P be a polynomial of degree n ≥ 2 that has only one zero, say αn, that
lies outside the closed unit disk D. Let C1 = D and C2 = {z : |z−αn| ≤ r2}.
By taking r2 → 0+ we see by the above theorem that if |αn| > n+1

n−1 , then P
has exactly one critical point α in C =

{
|z −

(
n−1
n

)
αn| ≤ 1

n

}
while C does

not intersect D. Hence P has exactly one critical point outside D whenever
|αn| > n+1

n−1 .
Here we give a general criterion for determining the number of critical

points outside D.

Theorem 1.1. Let Q(z) = c
∏n
k=1(z−αk) be a polynomial of degree n ≥ 2,

where c 6= 0. Suppose that αk /∈ D for 1 ≤ k ≤ m, and the remaining points
αk are in D. If we have

n∑
k=m+1

1

1 + |αk|
>

m∑
k=1

1

|αk| − 1
,

then Q has exactly m critical points outside D, counting multiplicities. If,
in addition, all the points αk lying on the unit circle are simple zeros of Q,
then Q′ has no zeros on the unit circle.
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Note that if Q has only one zero αn lying outside D with |αn| > n+1
n−1 ,

which is the same condition as discussed previously, then by Theorem 1.1, Q
has exactly one critical point outside D. From Theorem 1.1, we can deduce
that the result still holds even though |αn| ≤ n+1

n−1 if Q satisfies an additional
condition.

Corollary 1.2. Let Q(z) = c
∏n
k=1(z−αk) be a polynomial of degree n ≥ 2,

where c 6= 0. Suppose that α1 = α, α2 = α−1, where α is real and |α| > 1,
and all the remaining points αk, if any, are in D. Then Q has exactly one
critical point outside D, counting multiplicities. If, in addition, all the points
αk that are on the unit circle are simple zeros of Q, then Q has exactly n−2
critical points in D, counting multiplicities.

A polynomial P is said to be anti-reciprocal if P (z) = −zdegPP (z−1). If
P is anti-reciprocal, then so is cP for any non-zero complex number c. Note
that if P is anti-reciprocal, then 1 is a zero of P , we have P (0) 6= 0, and
for α 6= 0, we have P (α) = 0 if, and only if, P (α−1) = 0. Furthermore, α
and α−1 have the same multiplicity as zeros of P , as we see (for α 6= ±1)
by writing P (z) = (z − α)m(z − 1/α)ng(z), where g(α)g(1/α) 6= 0 and
using P (z) = −zdegPP (z−1). Therefore, if the leading coefficient of P is
real and each zero of P is real or has modulus 1, then the coefficients of
P are real. If P is an anti-reciprocal polynomial with exactly one zero,
counting multiplicities, lying outside D, and which furthermore is real, then
P satisfies the assumptions of Corollary 1.2, and so P has only one critical
point outside D. Indeed, if P is anti-reciprocal with exactly one zero, say α,
which is furthermore simple, outside D, then P has exactly one zero (namely,
1/α) in D, and all the other zeros of P must lie on ∂D. In Theorem 1.3, we
prove that if P satisfies certain additional conditions, then not only does P ′

have only one zero outside D but the same is also true for P ′′.

Theorem 1.3. Let Q be an anti-reciprocal polynomial with real coefficients
of degree n ≥ 3. Suppose that the zeros of Q are simple and that α > 1 is
the only zero of Q lying outside D. Then each of the polynomials Q′ and Q′′

has exactly one zero outside D, counting multiplicities.

We can construct a family of anti-reciprocal polynomials satisfying The-
orem 1.3. Let P be a polynomial with real coefficients, and set P ∗(z) :=
zdegPP (z−1). Suppose that P has a real zero greater than 1, that the re-
maining zeros of P are in D (so P (1) 6= 0), and that P ∗ 6= P . Boyd [1,
p. 320] showed that the polynomial

Q(z) = znP (z)− P ∗(z)(1)

satisfies the assumptions of Theorem 1.3 provided that n > degP − 2P
′(1)
P (1)

and that all zeros of P are simple. The polynomial in (1) was originally
introduced by R. Salem [6, Theorem IV, p. 166], [7, p. 30]. Therefore, this
gives the following corollary.
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Corollary 1.4. Let P be a polynomial with real coefficients such that P ∗ 6=
P . For n > degP − 2P

′(1)
P (1) , let Q be defined as in (1). Suppose that P has

a real zero greater than 1, that the remaining zeros of P are in D, and that
all zeros of P are simple. Then each of Q, Q′, and Q′′ has exactly one zero
outside D, counting multiplicities.

2. Proof of Theorem 1.1.

Lemma 2.1. Let Q(z) = c
∏n
k=1(z − αk) be a polynomial of degree n ≥ 2,

where c 6= 0. Suppose that αk /∈ D for 1 ≤ k ≤ m, and that the remaining
points αk are in D. If we have

m∑
k=1

1

1− |αk|
+

n∑
k=m+1

1

1 + |αk|
> 0,

then there is a positive δ such that for any r ∈ (1, 1 + δ), we have

Re
{
zQ′(z)

Q(z)

}
> 0 on |z| = r.

Furthermore, we have Re
{
zQ′(z)
Q(z)

}
> 0 whenever |z| = 1 and Q(z) 6= 0.

Proof. By an elementary calculation, we can show that if |z| > 1 and

αk 6= 0, then Re
{

z
z−αk

}
> 1

1+|αk| for m + 1 ≤ k ≤ n, the two sides being

equal if αk = 0. Also, if |z| = 1 then Re
{

z
z−αk

}
≥ 1

1−|αk| for 1 ≤ k ≤ m.
Let

ε =
m∑
k=1

1

1− |αk|
+

n∑
k=m+1

1

1 + |αk|
> 0.

Since Re
{

z
z−αk

}
is a continuous function except at z = αk and since |αk| >

1 for 1 ≤ k ≤ m, there exists a positive constant δ with 1 + δ < min{|αk| :
1 ≤ k ≤ m} such that

m∑
k=1

Re

{
z

z − αk

}
>

m∑
k=1

1

1− |αk|
− ε

2

on |z| = r, for all r ∈ (1, 1 + δ). Therefore, if r ∈ (1, 1 + δ) and |z| = r, we
have

Re

{
zQ′(z)

Q(z)

}
=

n∑
k=1

Re

{
z

z − αk

}
>

m∑
k=1

1

1− |αk|
− ε
2
+

n∑
k=m+1

1

1 + |αk|
=
ε

2
.

This proves Lemma 2.1. �

Now we are ready to present a proof of Theorem 1.1.
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Proof of Theorem 1.1. We are to show that zQ′(z) and Q(z) have the
same number of zeros lying in D. By Lemma 2.1, there is δ > 0 such that,
for all r ∈ (1, 1 + δ), we have Re

{
zQ′(z)
Q(z)

}
> 0 on |z| = r. So, for each fixed

r ∈ (1, 1 + δ), we have ∣∣∣∣1− zQ′(z)

Q(z)

∣∣∣∣ < 1 +

∣∣∣∣zQ′(z)Q(z)

∣∣∣∣ ,
hence |zQ′(z) − Q(z)| < |Q(z)| + |zQ′(z)|, on |z| = r. Then, by Rouché’s
theorem [4, Theorem 3.6, p. 341], zQ′(z) and Q(z) must have the same
number of zeros lying in {z : |z| ≤ r} for all r ∈ (1, 1 + δ). This proves the
first part of the theorem.

Next suppose that all the zeros αk that are on the unit circle, if any,
are simple. If Q′ has a zero γ on the unit circle, then Re

{
γQ′(γ)
Q(γ)

}
= 0,

which contradicts the fact that Re
{
zQ′(z)
Q(z)

}
> 0 on |z| = 1 outside the zeros

of Q. Hence Q′ has no zeros on ∂D. The proof of Theorem 1.1 is now
complete. �

For a proof of Corollary 1.2, we note that it follows from the fact that
Re
{

z
z−α + z

z−α−1

}
= 1 for all z with |z| = 1 and the argument in the proof

of Lemma 2.1.

3. Preliminaries for Theorem 1.3. To prove Theorem 1.3, we need the
following lemmas.

Lemma 3.1. If x > 1 and y ∈ [−1, 1), then

1 + x4 − 2x(1 + x2)y + 2x2(2y2 − 1)

(x2 − 2xy + 1)2
− y

2(1− y)
< 2.

Proof. This can be proved by using only elementary calculus (see [3, Lem-
ma 5.10, p. 54]). �

Lemma 3.2. If Q is an anti-reciprocal polynomial of degree n ≥ 2 with real
coefficients, then

(2) Re

{
zQ′(z)

nQ(z)

}
=

1

2
and Im

{
z2Q′′(z)

(n− 1)Q(z)

}
= Im

{
zQ′(z)

Q(z)

}
whenever |z| = 1 and Q(z) 6= 0.

Proof. We give a proof that yields the entire statement of this lemma, but
we note that the first equality in (2) has been proved in [8, (7.5), p. 229] for
reciprocal polynomials Q.
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Now, since Q is anti-reciprocal, we have Q(z) = −znQ
(
1
z

)
. Taking the

derivative and multiplying both sides by z, we get

zQ′(z) = −nznQ
(
1

z

)
+ zn−1Q′

(
1

z

)
= nQ(z) + zn−1Q′

(
1

z

)
.

So, we have

zn−1Q′
(
1

z

)
= zQ′(z)− nQ(z).(3)

After taking the derivative of both sides of this equation, and then multi-
plying both sides by z and applying the identity (3), we obtain

−zn−2Q′′
(
1

z

)
= z2Q′′(z) + 2(1− n)zQ′(z) + n(n− 1)Q(z).(4)

Let z ∈ ∂D with Q(z) 6= 0. Next dividing both sides of (4) by n(n−1)Q(z),
we get

−
zn−2Q′′

(
1
z

)
n(n− 1)Q(z)

=
z2Q′′(z)

n(n− 1)Q(z)
− 2zQ′(z)

nQ(z)
+ 1.(5)

By replacing Q(z) on the left side of (5) by −znQ
(
1
z

)
, the left-hand side

becomes

zn−2Q′′
(
1
z

)
n(n− 1)znQ

(
1
z

) =
z−2Q′′

(
1
z

)
n(n− 1)Q

(
1
z

) =

(
z2Q′′(z)

n(n− 1)Q(z)

)
.

Here we have used the fact that since |z| = 1 and Q has real coefficients, we
have Q(1/z) = Q(z) = Q(z), and similarly for Q′′ instead of Q. Then from
(5) we derive(

z2Q′′(z)

n(n− 1)Q(z)

)
− z2Q′′(z)

n(n− 1)Q(z)
= 1− 2zQ′(z)

nQ(z)
,

which gives 2i Im
{

z2Q′′(z)
n(n−1)Q(z)

}
= 2zQ′(z)

nQ(z) − 1. This implies that Re
{
zQ′(z)
nQ(z)

}
= 1

2 and Im
{

z2Q′′(z)
(n−1)Q(z)

}
= Im

{
zQ′(z)
Q(z)

}
, as desired. �

Lemma 3.3. Let Q(z) =
∏n
k=1(z − αk) be an anti-reciprocal polynomial of

degree n ≥ 3. Suppose that α1 = τ > 1, α2 = τ−1, α3 = 1, and |αk| = 1

for k > 3. For |z| = 1 with Q(z) 6= 0, if z2Q′′(z)
Q(z) is a real number, then it is

positive. In particular, then Q′′(z) 6= 0.

Proof. Since Q is monic and each zero of Q is real or has modulus 1, Q
has real coefficients. Let z be a point on the unit circle with Q(z) 6= 0. We
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have

z2Q′′(z)

Q(z)
= z2

((
Q′

Q

)′
(z) +

((
Q′

Q

)
(z)

)2
)

=

(
zQ′(z)

Q(z)

)2

−
n∑
k=1

z2

(z − αk)2
.

Suppose that z2Q′′(z)
Q(z) is a real number. Thus, by Lemma 3.2, zQ′(z)

nQ(z) is real

as well, and so is also
∑n

k=1
z2

(z−αk)2
. Since Re

{
zQ′(z)
nQ(z)

}
= 1

2 on |z| = 1 when

Q(z) 6= 0, we have

z2Q′′(z)

Q(z)
=
n2

4
−

n∑
k=1

z2

(z − αk)2
.(6)

Next we want to find an upper bound for the real part of
∑n

k=1
z2

(z−αk)2

on the unit circle. Let z = eiθ, where θ ∈ (0, 2π) (note that z 6= 1 since
Q(1) = 0). If α is real, we have

Re

{
z2

(z − α)2

}
=

1− 2α cos θ + α2(2 cos2 θ − 1)

(1 + α2 − 2α cos θ)2
.

For k ≥ 3, by letting αk = eiθk , θk ∈ [0, 2π), we have Re
{

z2

(z−αk)2

}
=

− cosβk
2−2 cosβk , where βk = θ − θk. Therefore,

Re

{
n∑
k=1

z2

(z − αk)2

}

=
1 + τ4 − 2τ(1 + τ2) cos θ + 2τ2(2 cos2 θ − 1)

(1 + τ2 − 2τ cos θ)2
−

n∑
k=3

cosβk
2− 2 cosβk

.

Taking x = τ and y = cos θ in Lemma 3.1, we see that

1 + τ4 − 2τ
(
1 + τ2

)
cos θ + 2τ2

(
2 cos2 θ − 1

)
(1 + τ2 − 2τ cos θ)2

− cos θ

2− 2 cos θ
< 2.

It is easy to see that − cosω
2−2 cosω ≤

1
4 for all ω ∈ (0, 2π). So, we obtain

Re

{
n∑
k=1

z2

(z − αk)2

}
< 2 +

1

4
(n− 3) =

n+ 5

4
.

Hence, from (6), we derive

z2Q′′(z)

Q(z)
=
n2

4
−

n∑
k=1

z2

(z − αk)2
>
n2

4
− n+ 5

4
> 0

if n ≥ 3, as desired. This proves Lemma 3.3. �
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4. Proof of Theorem 1.3. Let the assumptions of Theorem 1.3 be sat-
isfied. By Corollary 1.2 we know that Q′ has only one zero outside D and
has no zeros on ∂D. Let G(z) = −zn−2Q′′

(
1
z

)
and T (z) = zn−1Q′

(
1
z

)
. In

order to prove that Q′′ has exactly one zero outside D, it is equivalent to
show that G has only one zero in D. Since Q′ has only one zero outside D
and has no zeros on ∂D, T has exactly one zero in D and has no zeros on
∂D. If we have

|G(z) + 2(n− 1)T (z)| < |G(z)|+ 2(n− 1)|T (z)|(7)

on ∂D, then, by a form of Rouché’s Theorem [4, Theorem 3.6, p. 341], both
G and T have the same number of zeros inside D. This will prove the
theorem. From (3) and (4), we have

G(z) + 2(n− 1)T (z) = z2Q′′(z)− n(n− 1)Q(z).(8)

Let z ∈ ∂D. It is easy to see that if Q(z) = 0, then (7) holds. Now, for
Q(z) 6= 0, write z2Q′′(z)

(n−1)Q(z) = a+ib, where a, b ∈ R. So G(z)+2(n−1)T (z) =

(a−n+ib)(n−1)Q(z). Since, by Lemma 3.2, Im
{

z2Q′′(z)
(n−1)Q(z)

}
= Im

{
zQ′(z)
Q(z)

}
and Re

{
zQ′(z)
nQ(z)

}
= 1

2 , we have zQ′(z) = (n2 +ib)Q(z). We also have |G(z)| =
|z2Q′′(z)| = (n− 1)|a+ ib||Q(z)| and, by (3),

2|T (z)| = 2|zQ′(z)− nQ(z)| = | − n+ 2ib||Q(z)|.

Thus, the inequality (7) is equivalent to

|a− n+ ib| < |a+ ib|+ | − n+ 2ib|

which is clearly true if b 6= 0. If b = 0, then by Lemma 3.3, we have a > 0
and so the inequality above is true. Therefore, the inequality (7) holds on
∂D, as desired. The proof of Theorem 1.3 is now complete.
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