
doi: 10.2478/v10062-011-0006-5

ANNALES
U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A

L U B L I N – P O L O N I A

VOL. LXV, NO. 1, 2011 SECTIO A 69–85
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Inequalities and limit theorems
for random allocations

Abstract. Random allocations of balls into boxes are considered. Properties
of the number of boxes containing a fixed number of balls are studied. A mo-
ment inequality is obtained. A merge theorem with Poissonian accompanying
laws is proved. It implies an almost sure limit theorem with a mixture of
Poissonian laws as limiting distribution. Almost sure versions of the central
limit theorem are obtained when the parameters are in the central domain.

1. Introduction. Let n balls be placed successively and independently
into N boxes. Let µr(n,N) denote the number of boxes containing r balls.
There are several theorems concerning the limit laws of µr(n,N) when
the parameters belong to certain domains (see e.g. Weiss [16], Rényi [14],
Békéssy [2], and the monograph Kolchin–Sevast’yanov–Chistyakov [12]). It
is known that if n,N →∞ in the central domain, then the limit of the stan-
dardized µr(n,N) is standard normal. In the left-hand and in the right-hand
r-domains the limit of µr(n,N) is Poisson distribution. Strong laws of large
numbers are obtained for µr(n,N) in Chuprunov–Fazekas [5]. Concerning
the generalized allocation scheme see Kolchin [11].
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In this paper the most general result is the inequality in Theorem 2.1.
It gives an upper bound for the L2-distance of µr(n,N) and its conditional
expectation given the last n− k allocations.

Then asymptotic results are considered. The most interesting case is the
Poisson-type limiting distribution. In that case we do not have one single
limiting distribution. Instead of a limit theorem we can prove a merge
theorem, i.e. we can give a family of accompanying Poissonian laws being
close to the original distributions (Theorem 2.2).

Then we obtain almost sure (a.s.) versions of the limit theorems for
µr(n,N). The general form of the a.s. limit theorem is the following. Let
Yn, n ∈ N be a sequence of random elements defined on the probability
space (Ω,A,P). A.s. limit theorems state that

(1.1)
1

Dn

n∑
k=1

dkδYk(ω) ⇒ ν ,

as n→∞, for almost every ω ∈ Ω, where δx is the unit mass at point x and
⇒ ν denotes weak convergence to the probability measure ν. In the simplest
form of the a.s. CLT Yk = (X1 + · · ·+Xk)/

√
k, where X1, X2, . . . , are i.i.d.

real random variables with mean 0 and variance 1, dk = 1/k, Dn = log n,
and ν is the standard normal law N (0, 1); see Berkes [3] for an overview.
Recently, several papers are devoted to the background, the general forms
and certain special cases of the a.s. limit theorem, see e.g. Berkes–Csáki [4],
Fazekas and Rychlik [8], Matuła [13], Hörmann [10], Orzóg–Rychlik [15].

The present paper can be considered as an extension of some results in the
paper of Fazekas–Chuprunov [6], where a.s. limit theorems were obtained
for the number of empty boxes (see also Becker–Kern [1]). In Section 2, we
consider an appropriate representation of µr(n,N) in terms of independent,
uniformly distributed random variables in order to handle the dependence
structure inside the array µr(n,N), n,N = 1, 2, . . . . As µr(n,N) depends
on two parameters, we consider a.s. limit theorems of the form

(1.2)
1

Dn

∑
(k,K)∈Tn

dkKδYkK(ω) ⇒ ν ,

as n,N →∞, for almost every ω ∈ Ω, where Tn denotes a two-dimensional
domain. To prove the above type theorems, we apply a general a.s. limit
theorem, i.e. Theorem 2.1 of Fazekas–Chuprunov [6]. We quote it in The-
orem 4.1. This result is an extension of known general a.s. limit theorems
(see e.g. Fazekas and Rychlik [8]). We remark that multiindex versions
of a.s. limit theorems were obtained in Fazekas–Rychlik [9]. However, as
the weights there are of product type, we can not apply those results for
domains like {(k, i) : α1(k) ≤ i ≤ α2(k), k ∈ N}.

In this paper we use the general theorem to obtain Theorems 2.3, 2.4,
2.5, and 2.6. Among them Theorems 2.5, 2.6 concern the central domain
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(i.e. when 0 < α1 ≤ n/N ≤ α2 < ∞) and the limiting distribution is
standard normal. In Theorem 2.4 the parameters can vary in a domain
not included in the central domain but the limiting distribution is again
standard normal. The most interesting case is the Poisson-type limiting
distribution (Theorem 2.3). The limiting distribution in the almost sure
limit theorem (i.e. in Theorem 2.3) will be a mixture of the accompanying
laws in the usual limit theorem (i.e. in Theorem 2.2). In almost sure limit
theory the above situation is well-known (see Fazekas–Chuprunov [7] for
semistable laws, see also Theorems 2.10, 2,11, 2.12 in Fazekas–Chuprunov
[6] for random allocations).

2. Main results.

Random allocations. Let ξ, ξj , j ∈ N, be independent random variables
uniformly distributed on [0, 1]. Let N ∈ N. Consider the subdivision of the
interval [0, 1) into the subintervals ∆i = ∆Ni = [ i−1

N , iN ), 1 ≤ i ≤ N .
We consider the intervals ∆i, i = 1, . . . , N , as a row of boxes. Random

variables ξj , j = 1, 2, . . . , are realizations of ξ. Each realization of ξ we
treat as a random allocation of one ball into the N boxes. The event ξj ∈
∆i means that the jth ball falls into the ith box. Let n ∈ N, A(0) =
{1, 2, . . . , n}.

(2.1) µr(n,N) =

N∑
i=1

∑
|A|=r,
A⊂A(0)

∏
j∈A

I{ξj∈∆i}
∏

j∈A(0)\A

I{ξj /∈∆i}

is the number of boxes containing r balls and NCrn
1
Nr

(
1− 1

N

)n−r is its ex-
pectation. Here Crn =

(
n
r

)
is the binomial coefficient and IB is the indicator

of the event B.
For n,N ∈ N we will use the notation α = n

N and pr(α) = (αr/r!)e−α. It
is known (see Kolchin et al. [12], Ch. 2, Sec. 1, Theorem 1) that the following
limit relations (2.2) and (2.3) hold for any fixed r, t and if n,N →∞ such
that α = o(N). For the expectation we have

(2.2) Eµr(n,N) = Npr(α) + pr(α)
(
r − α/2− C2

r /α
)

+ O (1/N)

and for the covariances we have

(2.3) cov(µr(n,N), µt(n,N)) ∼ Nσrt(α),

where

σrr(α) = pr(α)
(
1− pr(α)− pr(α)(α− r)2/α

)
,

σrt(α) = −pr(α)pt(α) (1 + (α− r)(α− t)/α) , if t 6= r.

We shall use the notation

D(r)
n,N =

√
D2µr(n,N) =

√
cov(µr(n,N), µr(n,N)).
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We shall need a lower bound for D(r)
n,N , therefore the following remark will

be useful.

Remark 2.1.

1− pr(α)− pr(α)
(α− r)2

α
≥ cr > 0,

if r ≥ 2 is fixed and α is arbitrary, or if r = 0, 1 and α ≥ α0 > 0.

As in the theory of random allocations the roles of n and N are fixed,
therefore we shall use the following notation for two-dimensional indices:
(n,N), (k,K) ∈ N2.

Let

S
(r)
nN =

µr(n,N)− Eµr(n,N)

D(r)
n,N

be the standardized variable, where (n,N) ∈ N2.

The main inequality. Let n,N, r ∈ N, 0 ≤ k ≤ n. Recall that n is
the number of balls, N is the number of boxes. ξj denotes the jth ball,
∆i denotes the ith box. We use the notation A(k) = {k + 1, . . . , n}, k =
0, 1, . . . , n− 1. Let

ζn = ζnN =
N∑
i=1

∑
|A|=r,
A⊆A(0)

∏
j∈A

I{ξj∈∆i}
∏

j∈A(0)\A

I{ξj /∈∆i}−NC
r
n

1

N r

(
1− 1

N

)n−r
.

We see that ζn = µr(n,N)− Eµr(n,N), c.f. (2.1). We have

ζn =
N∑
i=1

∑
|A|=r,
A⊆A(0)

(ηiA − EηiA),

where

ηiA =
∏
j∈A

I{ξj∈∆i}
∏

j∈A(0)\A

I{ξj /∈∆i}

is the indicator of the event that the ith box contains the balls with indices
in the set A (and it does not contain any other ball). Let Fkn be the σ-
algebra generated by ξk+1, . . . , ξn. We will use the following conditional
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expectations η(k)
iA = E(ηiA|Fnk) and

(2.4)

ζkn = ζknN = E(ζn|Fkn) =

N∑
i=1

∑
|A|=r,
A⊆A(0)

(
η

(k)
iA − Eη(k)

iA

)

=
N∑
i=1

∑
|A|=r,
A⊆A(0)

(
1

N r−|A∩A(k)|

(
1− 1

N

)k−(r−|A∩A(k)|)

×
∏

j∈A∩A(k)

I{ξj∈∆i}
∏

j∈A(k)\A

I{ξj /∈∆i} −
1

N r

(
1− 1

N

)n−r)
.

The following inequality will play an important role in the proofs of our
theorems.

Theorem 2.1. Let 0 < k < n, 0 < r ≤ n and N be fixed. Then we have

(2.5) E(ζn − ζkn)2 ≤ ckαr−1

[(
1− 1

N

)n+k

αr +

(
1− 1

N

)n−r]
(α+ 1) ,

where c <∞ does not depend on n, N , and k, but can depend on r.

Remark 2.2. In Fazekas–Chuprunov [6] the following inequality was ob-
tained for the number of empty boxes. Let r = 0. Let k < n and N be
fixed. Then we have

(2.6) E(ζn − ζkn)2 ≤ k
(

1− 1

N

)n−k
and

(2.7) E(ζn − ζkn)2 ≤ kn

N
.

In Chuprunov–Fazekas [6] a fourth moment inequality was obtained for
µr(n,N).

Limit theorems for random allocations for r ≥ 2. First we consider
the Poisson limiting distribution. In that case we do not have one single lim-
iting distribution in the ordinary limit theorem. Instead of a limit theorem
we can prove a merge theorem, i.e. we can give a family of accompanying
laws being close to the original distributions (Theorem 2.2). The limiting
distribution in the almost sure limit theorem (i.e. in Theorem 2.3) will be
a mixture of the accompanying laws.

The following result is a version of Theorem 3 in Section 3, Chapter II
of Kolchin–Sevast’yanov–Chistyakov [12]. In our theorem the novelty is
that we state uniformity with respect to (n,N) in a certain domain, while
l remains fixed.
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Theorem 2.2. Let r ≥ 2 and l ∈ N be fixed. Then, as n,N →∞,

(2.8) P(µr(n,N) = l) =
1

l!
(Npr)

le−Npr(1 + o(1))

uniformly with respect to the domain T = {(n,N) : N ≥ n(2r−1)/(2r−2) log n}.

Now turn to the a.s. version of Theorem 2.2.

Theorem 2.3. Let r ≥ 2, 0 < λ1 < λ2 < ∞ be fixed. Let Tn be the
following domain in N2

Tn =

{
(k,K) ∈ N2 : k ≤ n, λ1 ≤

k

K1− 1
r

≤ λ2

}
.

Let

Qn(ω) =
1

r
r−1(λ2 − λ1) log n

∑
(k,K)∈Tn

1

K2− 1
r

δµr(k,K)(ω).

Then, as n→∞,

Qn(ω)⇒ µτ

for almost all ω ∈ Ω, where τ is a random variable with distribution

(2.9) P(τ = l) =
1

λ2 − λ1

∫ λ2

λ1

1

l!

(
xr

r!

)l
e−

xr

r! dx, l = 0, 1, . . . .

Now consider the case of the normal limiting distribution.

Theorem B. Let r ≥ 2 be fixed. If n,N →∞, so that Npr(α)→∞, then
S

(r)
nN ⇒ γ.

Here and in the following γ denotes the standard normal law. The proof
of Theorem B can be found in the monograph Kolchin et al. [12], Ch. 2,
Sec. 3, Theorem 4.

Consider an almost sure version of Theorem B.

Theorem 2.4. Let r ≥ 2 be fixed, 0 < α1, α2 <∞ and

Tn =
{

(k,K) ∈ N2 : k ≤ n, α1k ≤ K ≤ α2k
(2r+1)/(2r)

}
.

Let

Q(r)+
n (ω) =

1

log n

∑
(k,K)∈Tn

1

k(logα2 − logα1 + (1/2r) log k)K
δ
S
(r)
kK(ω)

.

Then, as n→∞, we have

Q(r)+
n (ω)⇒ γ, for almost every ω ∈ Ω.
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Almost sure limit theorems for random allocations in the central
domain. If n,N →∞, so that

0 < α1 ≤
n

N
≤ α2 <∞,

where α1 and α2 are some constants, then it is said that n,N → ∞ in
a central domain. In a central domain we have the following central limit
theorem.

Theorem A. Let 0 < α1 < α2 < ∞. If n,N → ∞, so that α = n
N ∈

[α1, α2], then S
(r)
nN ⇒ γ.

The proof of Theorem A can be found in the monograph Kolchin et al.
[12], Ch. 2, Sec. 2, Theorem 4.

Consider almost sure versions of Theorem A. In the following theorems
the domain is narrower than the one in Theorem 2.4, but they are valid for
arbitrary r ≥ 0.

Theorem 2.5. Let r ≥ 0 be fixed, 0 < α1 < α2 <∞ and

Q(r)
n (ω) =

1

(logα2 − logα1) log n

∑
k≤n

∑
{K :α1≤ k

K
≤α2}

1

kK
δ
S
(r)
kK(ω)

.

Then, as n→∞, we have

Q(r)
n (ω)⇒ γ, for almost every ω ∈ Ω.

In the above theorem the limit was considered for n→∞ (and the indices
of the summands were in a fixed central domain). The following theorem is
a two-index limit theorem, i.e. n→∞ and N →∞. The relation of n and
N could be arbitrary, however, as the indices of the summands are in a fixed
central domain, we assume that (n,N) is in the central domain considered.

Theorem 2.6. Let r ≥ 0 be fixed, 0 < α1 < α2 <∞ and

Q
(r)
nN (ω) =

1

(logα2 − logα1) log n

∑
k≤n

∑
{K :K≤N,α1≤ k

K
≤α2}

1

kK
δ
S
(r)
kK(ω)

.

Then, as n,N →∞, so that α1 ≤ n
N ≤ α2, we have

Q
(r)
nN (ω)⇒ γ, for almost every ω ∈ Ω.

3. Proof of Theorem 2.1. Since EηiA = Eη(k)
iA and

E(ηi1A1 − η
(k)
i1A1

)(ηi2A2 − η
(k)
i2A2

) = E(ηi1A1 · ηi2A2)− E(η
(k)
i1A1
· η(k)
i2A2

),
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for any A1, A2, we have

E(ζn − ζkn)2 =


N∑
i=1

∑
|A|=r,
A⊆A(0)

(ηiA − η(k)
iA )


2

=

N∑
i1,i2=1

 ∑
|A1|=|A2|=r,
A1,A2⊂A(0)

E(ηi1A1 − η
(k)
i1A1

)(ηi2A2 − η
(k)
i2A2

)



=
∑
i1 6=i2

 ∑
A1∩A2 6=∅,|A1|=|A2|=r,

A1,A2⊂A(0)

(
E(ηi1A1 · ηi2A2)− E(η

(k)
i1A1
· η(k)
i2A2

)
)

+
∑
i1 6=i2

 ∑
A1∩A2=∅,|A1|=|A2|=r,

A1,A2⊂A(0)

(
E(ηi1A1 · ηi2A2)− E(η

(k)
i1A1
· η(k)
i2A2

)
)

+

N∑
i=1

 ∑
A1 6=A2,|A1|=|A2|=r,

A1,A2⊂A(0)

(
E(ηiA1 · ηiA2)− E(η

(k)
iA1
· η(k)
iA2

)
)

+

N∑
i=1

 ∑
|A|=r,
A⊂A(0)

(
E(ηiA)2 − E(η

(k)
iA )2

)
= B1 +B2 +B3 +B4.

First consider B1. Let i1 6= i2, A1 ∩A2 6= ∅ and j ∈ A1 ∩A2. Then

I{ξj∈∆i1
}I{ξj∈∆i2

} = 0,

therefore E(ηi1A1ηi2A2) = 0. So B1 ≤ 0.
Now turn to B3. Now i1 = i2, A1 6= A2. If j ∈ A1 \ A2 or j ∈ A2 \ A1,

then

I{ξj∈∆i1
}I{ξj /∈∆i2

} = 0 or I{ξj /∈∆i1
}I{ξj∈∆i2

} = 0.

So E(ηi1A1 · ηi2A2) = 0. Therefore we have B3 ≤ 0.
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Now consider B2. Let i1 6= i2 and A1 ∩A2 = ∅. It holds that

E(ηi1A1ηi2A2)− E(η
(k)
i1A1

η
(k)
i2A2

)

=
1

N2r

(
1− 2

N

)n−2r

− 1

N2r

(
1− 1

N

)2k−(2r−|A(k)∩A1|−|A(k)∩A2|)(
1− 2

N

)n−k−|A(k)∩A1|−|A(k)∩A2|

=
1

N2r

((
1− 2

N

)n−2r

−
(

1− 1

N

)2k−2r+x(
1− 2

N

)n−k−x)
.

Here x = |A(k) ∩ A1| + |A(k) ∩ A2|, so we have 0 ≤ x ≤ 2r, n − k. Now let
a =

(
1− 2

N

)
, b =

(
1− 1

N

)
. Then 0 < a < b < 1, moreover b2 − a = 1/N2.

First consider those terms from B2 in which x = 2r. It means that A1, A2 ⊂
A(k). The number of these terms is N(N − 1)(n − k)!/(r!r!(n − k − 2r)!).
The magnitude of these terms is

∣∣∣∣∣ 1

N2r

((
1− 2

N

)n−2r

−
(

1− 1

N

)2k (
1− 2

N

)n−k−2r
)∣∣∣∣∣

=

∣∣∣∣ 1

N2r
an−k−2r(ak − b2k)

∣∣∣∣ ≤ 1

N2r
an−k−2rkb2(k−1) 1

N2
.

(Above we applied the mean value theorem.) So the contribution of these
terms is not greater than

N(N−1)
(n− k)!

r!r!(n− k − 2r)!

1

N2r

(
1− 2

N

)n−k−2r

k

(
1− 1

N

)2(k−1) 1

N2
= B21.

Now turn to the remaining terms of B2, i.e. the terms with x < 2r. The
number of these terms is

N(N−1)

(
n!

r!r!(n− 2r)!
− (n− k)!

r!r!(n− k − 2r)!

)
≤ N(N−1)

2rkn2r−1

r!r!
= B221.

(Above we applied the following fact. If 0 ≤ bi ≤ ai ≤ c and ai − bi ≤ l
for i = 1, 2, . . . , s, then

∏s
i=1 ai −

∏s
i=1 bi ≤ slcs−1.) Using the mean value
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theorem, we obtain for the magnitudes of these terms that∣∣∣∣ 1

N2r

(
an−2r − b2k−2r+xan−k−x

)∣∣∣∣
=

∣∣∣∣ 1

N2r
an−k−2r

((
ak − b2k

)
+ b2k

(
1−

(a
b

)2r−x
))∣∣∣∣

≤ 1

N2r
an−k−2r

((
1− 1

N

)2(k−1)

k
1

N2
+ b2k (2r − x)

1

N − 1

)

=
1

N2r

(
1− 2

N

)n−k−2r
((

1− 1

N

)2(k−1)

k
1

N2
+

(
1− 1

N

)2k

(2r − x)
1

N − 1

)
= B222.

Therefore we have

(3.1)

B2 ≤ B21 +B221B222

≤ c n
2r

N2r

(
1− 1

N

)n+k−2r−2

k + c
n2r−1

N2r

(
1− 1

N

)n+k−2r−2

k2

+ c
n2r−1

N2r−1

(
1− 1

N

)n+k−2r

k ≤ cα2r−1

(
1− 1

N

)n+k

k(α+ 1).

Finally, consider B4. Let r1 = |{1, 2, . . . , k} ∩ A| = r − |A ∩ A(k)|. We
have

B4 = N
∑
|A|=r,
A⊂A(0)

(
E(ηiA)2 − E(η

(k)
iA )2

)

= N
∑
|A|=r,
A⊂A(0)

(
1

N r

(
1− 1

N

)n−r

− 1

N2r1

(
1− 1

N

)2(k−r1) 1

N r−r1

(
1− 1

N

)n−k−(r−r1)
)

= N

min{k,r}∑
r1=max{r−(n−k),0}

Cr1k C
r−r1
n−k

(
1

N r

(
1− 1

N

)n−r

− 1

N r+r1

(
1− 1

N

)n+k−r−r1
)
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= N

min{k,r}∑
r1=max{r−(n−k),0}

Cr1k C
r−r1
n−k

1

N r

(
1− 1

N

)n−r(
1− 1

N r1

(
1− 1

N

)k−r1)

≤ N
min{k,r}∑

r1=max{r−(n−k),0}

kr1

r1!

nr−r1

(r − r1)!

1

N r

(
1− 1

N

)n−r(
1− 1

N r1

(
1− 1

N

)k−r1)

≤ N
r∑

r1=0

kr1

r1!

nr−r1

(r − r1)!

1

N r

(
1− 1

N

)n−r(
1− 1

N r1

(
1− 1

N

)k−min{r1,k}
)
.

Separating the term with r1 = 0, then applying the mean value theorem,
we obtain

(3.2)

B4 ≤ N
r∑

r1=1

kr1

r1!

nr−r1

(r − r1)!

1

N r

(
1− 1

N

)n−r

+N
nr

r!

1

N r

(
1− 1

N

)n−r(
1−

(
1− 1

N

)k)

≤ kαr−1

(
1− 1

N

)n−r r∑
r1=1

(
k

n

)r1−1 1

r1!
+N

αr

r!

k

N

(
1− 1

N

)n−r
≤ kαr−1

(
1− 1

N

)n−r (
e+

α

r!

)
.

Now, inequalities (3.1) and (3.2) imply (2.5). 2

4. Proofs of the limit theorems.

Proof of Theorem 2.2. Consider i.i.d. random variables η1, η2, . . . , ηN
having Poisson distribution with parameter α. Let ζN = η1 + · · · + ηN .
Consider also i.i.d. random variables η(r)

1 , η
(r)
2 , . . . , η

(r)
N having the following

distribution
P(η

(r)
i = l) = P(ηi = l | ηi 6= r).

Let ζ(r)
N = η

(r)
1 + · · ·+ η

(r)
N . By Lemma 1 at page 60 of Kolchin et al. [12]

(4.1) P(µr(n,N) = l) =

(
N

l

)
plr(1− pr)N−l

P(ζ
(r)
N−l = n− lr)
P(ζN = n)

= F
G

H
,

say. On the domain T , as n,N → ∞, we have α → 0 and pr(α) → 0.
Therefore, concerning F , we have(

N
l

)
plr(1− pr)N−l

1
l!(Npr)

le−Npr
∼ (1− pr)N

e−Npr
.

Taking logarithm, then applying Taylor’s expansion, we obtain

(1− pr)N

e−Npr
→ 1 (as n,N →∞) uniformly in T.
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To handle G, we need the following result (Theorem 1 on p. 61 of Kolchin
et al. [12]). For r ≥ 2, as m→∞, so that αm→∞, we have

P(ζ(r)
m = t) =

1

σr
√

2πm
e

(t−mαr)2

2mσ2r (1 + o(1))

uniformly with respect to (t−mαr)
σr
√
m

in any finite interval. Here

αr = Eη(r)
i =

α− rpr
1− pr

, σ2
r = D2η

(r)
i =

α

(1− pr)2

(
1− pr −

(α− pr)2

α
pr

)
.

Therefore

G = P(ζ
(r)
N−l = n− lr) =

1

σr
√

2π(N − l)
e

(n−lr−(N−l)αr)2

2(N−l)σ2r (1 + o(1)).

By straightforward calculations we obtain G ∼ 1/
√

2π(N − l)α ∼ 1/
√

2πn
uniformly in T . Finally, turn to H. As ζN has Poisson distribution, applying
the Stirling formula, we obtain

H = P(ζN = n) =
nn

n!
e−n ∼ 1√

2πn
uniformly.

Substituting the asymptotic values of F,G,H into (4.1), we obtain (2.8). �

The proofs of our a.s. limit theorems are based on the following gen-
eral a.s. limit theorem for two-dimensional domains (see Theorem 2.1 of
Fazekas–Chuprunov [6]). Actually the theorem is a version of Theorem 1.1
in Fazekas–Rychlik [8]. Let {α1(k)} and {α2(k)} be given integer valued se-
quences with 1 ≤ α1(k) ≤ α2(k) <∞, for k ∈ N. Let (B, %) be a complete
separable metric space and let ζki, α1(k) ≤ i ≤ α2(k), k ∈ N be an array
of random elements in B. Let µζ denote the distribution of the random
element ζ. Let log+ x = log x, if x ≥ 1 and log+ x = 0, if x < 1.

Theorem 4.1. Assume that there exist C > 0, ε > 0; an increasing se-
quence of positive numbers cn with limn→∞ cn = ∞, cn+1/cn = O(1); and
B-valued random elements ζkilj , for k, i, l, j ∈ N, k < l, α1(k) ≤ i ≤ α2(k),
α1(l) ≤ j ≤ α2(l) such that the random elements ζki and ζkilj are independent
for k < l and for any i, j; and

(4.2) E{%(ζlj , ζ
ki
lj ) ∧ 1} ≤ C (ck/cl)

β ,

for k < l and for any i, j, where β > 0. Let 0 ≤ dk ≤ log(ck+1/ck), assume
that

∑∞
k=1 dk =∞. Assume that

dk =

α2(k)∑
i=α1(k)

dki
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for each k, with nonnegative numbers dki. Let Dn =
∑n

k=1 dk. Then for
any probability distribution µ on the Borel σ-algebra of B the following two
statements are equivalent

(4.3)
1

Dn

n∑
k=1

α2(k)∑
i=α1(k)

dkiδζki(ω) ⇒ µ , as n→∞,

for almost every ω ∈ Ω;

(4.4)
1

Dn

n∑
k=1

α2(k)∑
i=α1(k)

dkiµζki ⇒ µ , as n→∞ .

Remark 4.1. If condition (4.2) is valid only for 1 < k0 ≤ k < l, then
Theorem 4.1 remains valid.

Now we can turn to the proofs of the a.s. limit theorems.

Proof of Theorem 2.3. Let ζkK = µr(k,K). For k < n let ζkKnN = ζkn +

Eζkn, where ζkn is defined in (2.4). We show that ζkKnN satisfies the conditions
of Theorem 4.1. ζkKnN and ζkK are independent for k < n. By Theorem 2.1,
we have

E
(
ζnN − ζkKnN

)2
≤ c0k

( n
N

)r−1
≤ c0

k

n

( n

N1−1/r

)r
≤ c0

k

n
(λ2)r

because (n,N) ∈ Tn. Therefore dk = c 1
k is an appropriate choice for any

positive constant c. Let dkK = 1
K2−1/r for (k,K) with λ1 ≤ k

K1−1/r ≤ λ2.
Then

dk =
∑

dkK =
∑

{
K : (k/λ2)

r
r−1≤K≤(k/λ1)

r
r−1

}
1

K2−1/r
≈ r

r − 1
(λ2 − λ1)

1

k
.

Therefore the above choice is possible. So, in Theorem 4.1, we can put

Dn =
n∑
k=1

dk =

n∑
k=1

r

r − 1
(λ2 − λ1)

1

k
≈ r

r − 1
(λ2 − λ1) log n.

Now we remark that we can apply Theorem 2.2 because the domain in that
theorem is wider that the one in Theorem 2.3. According to Theorem 4.1,
we have to prove that

(4.5)
F =

r − 1

r(λ2 − λ1) log n

n∑
k=1

∑
{
K :λ1≤ k

K1−1/r
≤λ2

}
1

K2− 1
r

P(µr(k,K) = l)

→ P(τ = l)
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where τ is defined in (2.9). It is easier to calculate F in a wider domain and
then remove the surplus, that is

F = · · ·
N(n)∑
K=1

∑
{
k :λ1≤ k

K1−1/r
≤λ2

} · · · − · · ·
(n/λ1)

r
r−1∑

K=(n/λ2)
r
r−1

K
r−1
r λ2∑
k=n

· · · = A−B,

say, where N(n) = (n/λ1)
r
r−1 .

Now consider the following approximations. Since α = k/K → 0 if
k,K →∞, so that λ1 ≤ k

K1−1/r ≤ λ2, therefore e−α ≈ e0 = 1. So we have

Kpr = K
αr

r!
e−α = K

1

r!

(
k

K

)r
e−k/K ≈ 1

r!

(
k

K1−1/r

)r
.

Therefore we obtain
1

l!

∑
{k :λ1≤ k

K1−1/r
≤λ2}

1

K1− 1
r

(Kpr)
le−Kpr

≈ 1

l!

∑
{k :λ1≤ k

K1−1/r
≤λ2}

1

K1− 1
r

(
1

r!

(
k

K1− 1
r

)r)l
exp

(
− 1

r!

(
k

K1− 1
r

)r)

≈ 1

l!

∫ λ2

λ1

(
xr

r!

)l
e−

xr

r! dx.

So we have

A ≈ 1
r
r−1(λ2 − λ1) lnn

N(n)∑
K=1

1

K

1

l!

∑
{k :λ1≤ k

K1−1/r
≤λ2}

1

K1− 1
r

(Kpr)
le−Kpr

≈ 1

(λ2 − λ1)

1

l!

∫ λ2

λ1

(
xr

r!

)l
e−

xr

r! dx.

For B we have

0 ≤ B ≤ 1

c log n

(n/λ1)
r
r−1∑

K=(n/λ2)
r
r−1

K
r−1
r λ2∑
k=n

1

K2− 1
r

→ 0

as n → ∞. So the limit of F is the same as the limit of A. It proves
(4.5). �

Proof of Theorem 2.4. Let r ≥ 2 be fixed. Let ζkK = S
(r)
kK . For k < n

let ζkKnN = ζkn/D
(r)
nN , where ζkn is defined in (2.4). We show that ζkKnN satisfies

the conditions of Theorem 4.1. ζkKnN and ζkK are independent for k < n.
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As r ≥ 2, by (2.3) and Remark 2.1, CNαre−α ≤ (D(r)
nN )2, where C > 0.

Therefore, by Theorem 2.1, we have

E
(
ζnN − ζkKnN

)2
≤ c0

k

n
(αr+1 + 1) ≤ c′ k

n
,

if (n,N) ∈ Tn,N . Therefore dk = c 1
k is an appropriate choice for any positive

constant c. Now let

dk,K =
1

k

1

logα2 − logα1 + 1
2r log k

1

K
.

Then we have ∑
{K :α1k≤K≤α2k(1+2r)/(2r)}

dk,K ≈
1

k
= dk .

So, in Theorem 4.1, we can put Dn = log n.
If n,N →∞, so that (n,N) ∈ Tn,N , then Npr(α)→∞. So we can apply

Theorem B. We obtain
1

log n

∑
(k,K)∈Tn,N

dkK µS(r)
kK

⇒ γ ,

as n→∞. So we can apply Theorem 4.1. �

Proof of Theorem 2.5. For r = 0 our result is Theorem 2.4 of Fazekas
and Chuprunov [6]. Now let r ≥ 1. Let ζkK = S

(r)
kK . For k < n let

ζkKnN = ζkn/D
(r)
nN , where ζkn is defined in (2.4). We will show that ζkKnN satisfies

the conditions of Theorem 4.1. ζkKnN and ζkK are independent for k < n.

By (2.3) and Remark 2.1, in the central domain CN ≤ (D(r)
nN )2, where C

depends only on α1 and α2. Therefore, by Theorem 2.1, we have

E
(
ζnN − ζkKnN

)2
≤ c0

k

(D(r)
nN )2

≤ c0

C

k

N
≤ c0α2

C

k

n
.

Therefore dk = c 1
k is an appropriate choice for any positive constant c.

Moreover, as

dk =
1

k

∑
{K : k

α2
≤K≤ k

α1
}

1

K
≈ 1

k
(logα2 − logα1) ,

the above choice is possible. So, in Theorem 4.1, we can put Dn = (logα2−
logα1) log n. By Theorem A,

1

(logα2 − logα1) log n

∑
k≤n

∑
{K :α1≤ k

K
≤α2}

1

kK
µ
S
(r)
kK

⇒ γ ,

as n→∞. So we can apply Theorem 4.1. �
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Proof of Theorem 2.6. Consider Q(r)
n from Theorem 2.5 and Q(r)

nN . Their
difference is

Q(r)
n (ω)−Q(r)

nN (ω)=
1

(logα2 − logα1) log n

∑
k≤n

∑
{K :K>N,α1≤ k

K
≤α2}

1

kK
δ
S
(r)
kK(ω)

.

As the summands are probability measures, we can confine attention to the
weights. However, a direct calculation shows that∑

k≤n

∑
{K :K>N,α1≤ k

K
≤α2}

1

kK
≤ c(logα2 − logα1)2 .

Therefore, when for a fixed ω we have Q
(r)
n (ω) ⇒ γ, as n → ∞, then

Q
(r)
nN (ω)⇒ γ, as n,N →∞. �
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