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On a two-parameter generalization
of Jacobsthal numbers

and its graph interpretation

Abstract. In this paper we introduce a two-parameter generalization of the
classical Jacobsthal numbers ((s, p)-Jacobsthal numbers). We present some
properties of the presented sequence, among others Binet’s formula, Cassini’s
identity, the generating function. Moreover, we give a graph interpretation of
(s, p)-Jacobsthal numbers, related to independence in graphs.

1. Introduction. The Jacobsthal sequence {Jn} is defined by the second
order linear recurrence

(1) Jn = Jn−1 + 2Jn−2 for n ≥ 2

with J0 = 0, J1 = 1. The Binet’s formula of this sequence has the following
form

Jn =
1

3
(2n − (−1)n) for n ≥ 0.

Moreover, the explicit closed form expression for numbers Jn is

Jn =

[n−1
2

]∑
r=0

(
n− 1− r

r

)
2r for n ≥ 0.
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Other interesting properties of Jacobsthal numbers are given in [6]. There
are many generalizations of this sequence in the literature. The second
order recurrence (1) has been generalized in two ways: first, by preserving
the initial conditions and second, by preserving the recurrence relation. We
recall some of such generalizations:

1) k-Jacobsthal sequence {jk,n} [5], jk,n+1 = kjk,n + 2jk,n−1 for k ≥ 1 and
n ≥ 1 with jk,0 = 0, jk,1 = 1,

2) k-Jacobsthal sequence {Jk,n} [3], Jk,n+1 = Jk,n + kJk,n−1 for k ≥ 1 and
n ≥ 1 with Jk,0 = 0, Jk,1 = 1,

3) generalized Jacobsthal p-sequence {Jp} [1], for any p ∈ Z+ and n > p+1
Jp(n) = Jp(n − 1) + 2Jp(n − p − 1) with initial conditions Jp(1) =
Jp(2) = . . . = Jp(p+ 1) = 1,

4) (s, t)-Jacobsthal sequence {ĵn(s, t)} [8], ĵn(s, t)=sĵn−1(s, t)+2tĵn−2(s, t)

for n ≥ 2 with ĵ0(s, t) = 0 and ĵ1(s, t) = 1, for real numbers s, t,
s > 0, t 6= 0 and s2 + 8t > 0,

5) Jacobsthal sequence {J(d, t, n)} [7], J(d, t, n) = J(d, t, n − 1) + tJ(d, t,
n − d) for n ≥ d with J(d, t, 0) = 1, J(d, t, n) = 1 for n = 1, . . . , d,
t ≥ 1, d ≥ 2.

In this paper we introduce a new generalization of the classical Jacobsthal
numbers. Unlike other variations, this generalization depends on two integer
parameters used in the recurrence relation (1). Let n, s, p ≥ 0 be integers.
We define (s, p)-Jacobsthal sequence {Jn(s, p)} by the following recurrence

(2) Jn(s, p) = 2s+pJn−1(s, p) + (22s+p + 2s+2p)Jn−2(s, p) for n ≥ 2

with initial conditions J0(s, p) = 1, J1(s, p) = 2s + 2p + 2s+p.
For s = p = 0 we obtain Jn(0, 0) = Jn+2.
We will describe the terms of the sequence {Jn(s, p)} explicitly by using

a generalization of Binet’s formula. Moreover, we will present some iden-
tities for (s, p)-Jacobsthal numbers, which generalize known results for the
classical Jacobsthal numbers.

2. A graph interpretation of (s, p)-Jacobsthal numbers. In general
we use the standard terminology and notation of graph theory, see [2]. In
this section, we will present an interpretation of (s, p)-Jacobsthal numbers
related to independence in graphs. Let G be a finite, undirected, simple
graph with vertex set V (G) and edge set E(G). Recall that a subset S
of V (G) is an independent set of G if no two vertices of S are adjacent
in G. Moreover, every one-element subset of V (G) and the empty set are
independent sets of G. The number of independent sets of a graph G is
denoted by NI (G). In the chemical literature the number of independent
sets of a graph G is called the Merrifield–Simmons index of G and is denoted
by σ(G) ([4]). The numbers Jn(s, p) have the graph interpretation directly
related to the Merrifield–Simmons index.
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Consider a graph Hs,p
n (Figure 1), where n ≥ 1, s, p ≥ 0.
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Figure 1.

Theorem 1. Let n, s, p be integers, n ≥ 1, s, p ≥ 0. Then

σ(Hs,p
n ) = Jn(s, p).

Proof. In the beginning we will determine the number of independent sets
of graphs Hs,p

1 and Hs,p
2 . Assume that vertices of the graphs are numbered

as in Figure 1. Denote by L(x) the set of pendant vertices attached to
the vertex x. Let n = 1. Assume that S is any independent set of Hs,p

1 .
Consider two cases.
Case 1. y1 ∈ S.

Then x1, w1, . . . , wp 6∈ S. Hence S = {y1}∪Z, where Z is any subset
of the set {z1, . . . , zs}.

Case 2. y1 6∈ S. Consider two possibilities.
2.1. x1 ∈ S.

Then S = {x1}∪W , where W is any subset of the set {w1, . . . , wp}.
2.2. x1 /∈ S.

Then S = Z ∪W .
Finally, we have σ(Hs,p

1 ) = 2s + 2p + 2s+p = J1(s, p).
In the same manner we can obtain

σ(Hs,p
2 ) = 22p+s + 2p+2s + 2s+p(2s + 2p + 2s+p)

= 22s+p+1 + 2s+2p+1 + 22s+2p = J2(s, p).

Let n ≥ 3. Assume that S is any independent set of Hs,p
n . Consider two

cases.
Case 1. yn ∈ S.

Let S1 be a family of all independent sets S of the graph Hs,p
n such

that yn ∈ S. Then xn, xn−1, yn−1, w1, . . . , wp 6∈ S. Hence S =
S′∪{yn}∪S1∪S2∪S3, where S′ is any independent set of the graph
Hs,p

n \ {xn, xn−1, yn, yn−1} \ (L(xn) ∪ L(xn−1) ∪ L(yn) ∪ L(yn−1)),
isomorphic to Hs,p

n−2, S1 ⊂ L(xn), S2 ⊂ L(xn−1), S3 ⊂ L(yn−1).
Hence by the fundamental combinatorial statements we have |S1| =
2p · (2s)2σ(Hs,p

n−2).
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Case 2. yn 6∈ S.
Let S2 be a family of all independent sets S of the graph Hs,p

n such
that yn 6∈ S. Consider two possibilities.
2.1. xn 6∈ S.

Then S = S′′∪S1∪S4, where S′′ is any independent set of the graph
Hs,p

n \ {xn, yn} \ (L(xn) ∪ L(yn)), isomorphic to Hs,p
n−1, S1 ⊂ L(xn),

S4 ⊂ L(yn).
2.2. xn ∈ S.

Then S = S′ ∪ {xn} ∪ S2 ∪ S3 ∪ S4, where S′ is any independent set
of the graph Hs,p

n \ {xn, xn−1, yn, yn−1} \ (L(xn)∪L(xn−1)∪L(yn)∪
L(yn−1)), isomorphic to Hs,p

n−2.

Consequently, |S2| = 2s · 2pσ(Hs,p
n−1) + (2p)2 · 2sσ(Hs,p

n−2).
Finally, for n ≥ 3 we obtain

σ(Hs,p
n ) = |S1|+ |S2| = 2s+pσ(Hs,p

n−1) + (22s+p + 22p+s)σ(Hs,p
n−2)

with σ(Hs,p
1 ) = 2s + 2p + 2s+p and σ(Hs,p

2 ) = 22s+p+1 + 2s+2p+1 + 22s+2p,
which ends the proof. �

Corollary 2. Let n ≥ 1. Then σ(H0,0
n ) = Jn(0, 0) = Jn+2.

3. Some identities for (s, p)-Jacobsthal numbers. The characteristic
equation, associated with the recurrence relation (2) is

r2 − 2s+pr − (22s+p + 2s+2p) = 0(3)

with roots

r1 = 2s+p−1 +
1

2

√
4s+p + 2s+p+2(2s + 2p),(4)

r2 = 2s+p−1 − 1

2

√
4s+p + 2s+p+2(2s + 2p).(5)

Note that

r1 + r2 = 2s+p,(6)

r1r2 = −(22s+p + 2s+2p),(7)

r1 − r2 =
√

4s+p + 2s+p+2(2s + 2p).(8)

The general formula of (s, p)-Jacobsthal sequence can be written by the
following identity

Jn(s, p) = c1r
n
1 + c2r

n
2

for some constants c1, c2. Using initial conditions J0(s, p) = 1, J1(s, p) =
2s + 2p + 2s+p, we get the system of two linear equations{

c1 + c2 = 1

c1r1 + c2r2 = 2s + 2p + 2s+p.
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Solving the system, we obtain

(9)

c1 =
2s + 2p + 2s+p − 2s+p−1 + 1

2

√
4s+p + 2s+p+2(2s + 2p)√

4s+p + 2s+p+2(2s + 2p)
,

c2 =
2s+p−1 − 2s − 2p − 2s+p + 1

2

√
4s+p + 2s+p+2(2s + 2p)√

4s+p + 2s+p+2(2s + 2p)
.

Hence we get the following result.

Proposition 3 (Binet’s formula). Let n, s, p ≥ 0. Then the n-th (s, p)-
Jacobsthal number is given by

(10)
Jn(s, p) =

(2s + 2p + 2s+p − 2s+p−1 + 1
2

√
∆)rn1√

∆

+
(2s+p−1 − 2s − 2p − 2s+p + 1

2

√
∆)rn2√

∆
,

where ∆ = 4s+p +2s+p+2(2s +2p), r1 = 2s+p−1 + 1
2

√
∆, r2 = 2s+p−1− 1

2

√
∆.

Using Binet’s formula, we can get some identities for (s, p)-Jacobsthal
numbers.

Theorem 4 (Cassini’s identity). Let n, s, p be integers, n ≥ 1, s, p ≥ 0.
Then

Jn+1(s, p)Jn−1(s, p)− J2
n(s, p) = (−1)n(2s + 2p)2(22s+p + 2s+2p)n−1.

Proof. By formula (10) we get

Jn+1(s, p)Jn−1(s, p)− J2
n(s, p)

= (c1r
n+1
1 + c2r

n+1
2 )(c1r

n−1
1 + c2r

n−1
2 )− (c1r

n
1 + c2r

n
2 )2

= c1c2r
n+1
1 rn−12 + c1c2r

n+1
2 rn−11 − 2c1c2r

n
1 r

n
2

= c1c2(r1r2)
n(
r1
r2

+
r2
r1
− 2) = c1c2(r1r2)

n−1(r1 − r2)2.

By simple calculations we obtain

c1c2 =
−(2s + 2p)2

4s+p + 2s+p+2(2s + 2p)
.(11)

Using formulas (7), (8) and (11), we have

Jn+1(s, p)Jn−1(s, p)− J2
n(s, p) = (−1)n(2s + 2p)2(22s+p + 2s+2p)n−1.

�

Proposition 5. Let n, s, p be integers, n ≥ 1, s, p ≥ 0. Then

lim
n→∞

Jn+1(s, p)

Jn(s, p)
= 2s+p−1 +

1

2

√
4s+p + 2s+p+2(2s + 2p).
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Proof. By formula (10) we have

lim
n→∞

Jn+1(s, p)

Jn(s, p)
= lim

n→∞

c1r1
n+1 + c2r

n+1
2

c1r1n + c2rn2
= lim

n→∞

c1r1 + c2r2(
r2
r1

)n

c1 + c2(
r2
r1

)n
.

Since lim
n→∞

( r2r1 )n = 0, we have

lim
n→∞

Jn+1(s, p)

Jn(s, p)
= r1 = 2s+p−1 +

1

2

√
4s+p + 2s+p+2(2s + 2p).

�

Theorem 6 (summation formula).

(12)
n−1∑
i=0

Ji(s, p) =
Jn(s, p) + (22s+p + 2s+2p)Jn−1(s, p)− 1− 2s − 2p

2s+p(1 + 2s + 2p)− 1
.

Proof. By Binet’s formula (10) we have
n−1∑
i=0

Ji(s, p) =
n−1∑
i=0

(c1r
n
1 + c2r

n
2 ) = c1

1− rn1
1− r1

+ c2
1− rn2
1− r2

=
c1 + c2 − (c1r2 + c2r1)− (c1r

n
1 + c2r

n
2 ) + r1r2(c1r

n−1
1 + c2r

n−1
2 )

(1− r1)(1− r2)

=
c1 + c2 − (c1r2 + c2r1)− Jn(s, p) + r1r2Jn−1(s, p)

1− (r1 + r2) + r1r2
.

By formulas (4), (5) and (9) we obtain

c1r2 + c2r1 = −(2s + 2p).(13)

Using (6), (7) and (13), we get
n−1∑
i=0

Ji(s, p) =
1 + 2s + 2p − Jn(s, p)− (22s+p + 2s+2p)Jn−1(s, p)

1− 2s+p − 22s+p − 2s+2p
.

Hence
n−1∑
i=0

Ji(s, p) =
Jn(s, p) + (22s+p + 2s+2p)Jn−1(s, p)− 1− 2s − 2p

2s+p(1 + 2s + 2p)− 1
.

�

Corollary 7. For s = p = 0 we get the well-known identity for the classical
Jacobsthal numbers

n−1∑
i=0

Ji =
Jn+2 + 2Jn+1 − 3

2
.

The next theorem presents the generating function of (s, p)-Jacobsthal
sequence.
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Theorem 8. The generating function of the sequence {Jn(s, p)} has the
following form

f(x) =
1 + (2s + 2p)x

1− 2s+px− (22s+p + 2s+2p)x2
.

Proof. Let f(x) =
∞∑
n=0

Jn(s, p)xn. Then, by recurrence relation (2), we

have

f(x) = J0(s, p) + J1(s, p)x+
∞∑
n=2

Jn(s, p)xn

= 1 + (2s + 2p + 2s+p)x

+

∞∑
n=2

(
2s+pJn−1(s, p) + (22s+p + 2s+2p)Jn−2(s, p)

)
xn

= 1 + (2s + 2p + 2s+p)x

+ 2s+p
∞∑
n=2

Jn−1(s, p)x
n + (22s+p + 2s+2p)

∞∑
n=2

Jn−2(s, p)x
n

= 1 + (2s + 2p + 2s+p)x

+ 2s+px

∞∑
n=1

Jn(s, p)xn + (22s+p + 2s+2p)x2
∞∑
n=0

Jn(s, p)xn

= 1 + (2s + 2p + 2s+p)x

+ 2s+px
∞∑
n=0

Jn(s, p)xn − 2s+px+ (22s+p + 2s+2p)x2f(x).

Thus

f(x) = 1 + (2s + 2p)x+ 2s+pxf(x) + (22s+p + 2s+2p)x2f(x).

Hence

f(x) =
1 + (2s + 2p)x

1− 2s+px− (22s+p + 2s+2p)x2
,

which ends the proof. �
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