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ABSTRACT. In this paper we introduce a two-parameter generalization of the
classical Jacobsthal numbers ((s, p)-Jacobsthal numbers). We present some
properties of the presented sequence, among others Binet’s formula, Cassini’s
identity, the generating function. Moreover, we give a graph interpretation of
(s, p)-Jacobsthal numbers, related to independence in graphs.

1. Introduction. The Jacobsthal sequence {J,} is defined by the second
order linear recurrence

(1) Jn = Jn-1+2Ju_g forn>2

with Jg = 0, J; = 1. The Binet’s formula of this sequence has the following
form

1
In = 5(2” —(-1)") formn>0.

Moreover, the explicit closed form expression for numbers J, is

—1-
anz(n ) ’”)27“ for n > 0.

r=0
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Other interesting properties of Jacobsthal numbers are given in [6]. There
are many generalizations of this sequence in the literature. The second
order recurrence (1) has been generalized in two ways: first, by preserving
the initial conditions and second, by preserving the recurrence relation. We
recall some of such generalizations:

1) k-Jacobsthal sequence {jin} [5], jent1 = kjkn + 2jkn—1 for £ > 1 and
n > 1 with jgo =0, jk1 =1,

2) k-Jacobsthal sequence {Jy .} [3], Jont1 = Jkn + kJkpn—1 for k> 1 and
n > 1 with Jk70 = 0, Jk71 = 1,

3) generalized Jacobsthal p-sequence {J,} [1], for any p € Z* and n > p+1
Jp(n) = Jp(n —1) + 2Jp(n — p — 1) with initial conditions J,(1) =
T(2) == Jp 1) = 1,

4) (s,t)-Jacobsthal sequence {J,,(s,t)} [8], Jn(5, 1) =5jn_1(5,t)+2tjn_2(s, 1)
for n > 2 with jo(s,t) = 0 and j;(s,t) = 1, for real numbers s,t,
s>0,t#0and s?+ 8 > 0,

5) Jacobsthal sequence {J(d,t,n)} [7], J(d,t,n) = J(d,t,n — 1) + tJ(d,t,
n —d) for n > d with J(d,t,0) =1, J(d,t,n) =1 forn =1,...,d,
t>1,d>2.

In this paper we introduce a new generalization of the classical Jacobsthal
numbers. Unlike other variations, this generalization depends on two integer
parameters used in the recurrence relation (1). Let n,s,p > 0 be integers.
We define (s, p)-Jacobsthal sequence {.J,,(s,p)} by the following recurrence

(2) Jn(sap) = 2s+p<]n—1(5’p) + (22S+p + 23+2p)Jn—2(8)p) for n > 2

with initial conditions Jo(s,p) = 1, Ji(s,p) = 25 + 2P + 2517,

For s = p = 0 we obtain J,(0,0) = J,12.

We will describe the terms of the sequence {J,(s,p)} explicitly by using
a generalization of Binet’s formula. Moreover, we will present some iden-
tities for (s, p)-Jacobsthal numbers, which generalize known results for the
classical Jacobsthal numbers.

2. A graph interpretation of (s, p)-Jacobsthal numbers. In general
we use the standard terminology and notation of graph theory, see [2]. In
this section, we will present an interpretation of (s, p)-Jacobsthal numbers
related to independence in graphs. Let G be a finite, undirected, simple
graph with vertex set V(G) and edge set E(G). Recall that a subset S
of V(G) is an independent set of G if no two vertices of S are adjacent
in G. Moreover, every one-element subset of V(G) and the empty set are
independent sets of G. The number of independent sets of a graph G is
denoted by NI(G). In the chemical literature the number of independent
sets of a graph G is called the Merrifield-Simmons index of G' and is denoted
by ¢(G) ([4]). The numbers J,(s,p) have the graph interpretation directly
related to the Merrifield-Simmons index.
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Consider a graph H,” (Figure 1), where n > 1, s,p > 0.
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Theorem 1. Let n,s,p be integers, n > 1, s,p > 0. Then
o(HyP) = Jn(s,p)-

Proof. In the beginning we will determine the number of independent sets
of graphs Hy¥ and H;?. Assume that vertices of the graphs are numbered
as in Figure 1. Denote by L(z) the set of pendant vertices attached to
the vertex z. Let n = 1. Assume that S is any independent set of H;”.
Consider two cases.
Case 1. y; € S.
Then z1, w1, ..., wp € S. Hence S = {y1}UZ, where Z is any subset
of the set {z1,...,2s}.
Case 2. y; ¢ S. Consider two possibilities.
2.1. ;€ 5.
Then S = {x1} UW, where W is any subset of the set {w1,..., wp}.
Then S=ZUW.
Finally, we have o(H;") = 25 4+ 2P + 257P = J (s, p).
In the same manner we can obtain

o(HyP) = 22PFs 4 oPF25 4 951P(25 4 9P 4 25P)
— 225+p+1 + 25+2p+1 + 223+2p — JQ(S,p)~

Let n > 3. Assume that S is any independent set of Hy;”. Consider two
cases.

Case 1. y, € S.

Let S1 be a family of all independent sets S of the graph H,,* such
that y, € S. Then x,,xn—1,Yn—1,w1,...,wp ¢ S. Hence S =
S"U{yntUS1US2US3, where S’ is any independent set of the graph
HyP \ {20, 2n—1,Yn, Yn-1} \ (L(20) U L(zn-1) U L(yn) U L(yn-1)),
isomorphic to H,;’5, Si C L(x,), S2 C L(zn—1), S3 C L(yn—1)-
Hence by the fundamental combinatorial statements we have |S;| =
20 (2°)20 (H,Py).
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Case 2. y, € S.

Let Sy be a family of all independent sets S of the graph H,,” such
that y, € S. Consider two possibilities.

2.1. z, ¢ S.
Then S = S”US;1USy, where S” is any independent set of the graph
HyP\ {zn,yn} \ (L(zy) U L(yy)), isomorphic to H,’,, S1 C L(z,),
S4 C L(yn)-

2.2. 2, €5.
Then S = S"U{x,}USyUS3U Sy, where S’ is any independent set
of the graph Hp? \ {Zn, Tn—1,Yn, Yn—1} \ (L(25) U L(xp—1) U L(y,) U
L(yn—1)), isomorphic to H*,.

Consequently, |So| = 2% - 2Pa(HP,) + (2P)? - 250 (H.P,).
Finally, for n > 3 we obtain

G(HEP) = |81+ 85| = 2P (HIP,) + (23547 4 229%5) o (P,

with o(HP) = 25 + 20 + 25%P and o(H, ") = 226¥P+] 4 ost2ptl 4 92st2p,
which ends the proof. (]

Corollary 2. Letn > 1. Then o(Hp°) = J,,(0,0) = J,1o.

3. Some identities for (s, p)-Jacobsthal numbers. The characteristic
equation, associated with the recurrence relation (2) is

(3) r2 — 95HPp _ (925FP | 95+2P) —
with roots

(4) r o= gstr—1 4 %\/4s+p + 25HP+2(2s 4 2P),
(5) o = 25TP~1 %\/4«%? + 25+P+2(25  2P),
Note that

(6) T+ 1y = 25TP

(7) rire = _(22s+p 4 2s+2p)’

(8) 1 — 1o = \/A5tP 4 25HP+2(25 + 2p),

The general formula of (s,p)-Jacobsthal sequence can be written by the
following identity

Jn(s,p) = crr + cory

for some constants cj, co. Using initial conditions Jy(s,p) = 1, Ji(s,p) =
25 4 2P + 257P_ we get the system of two linear equations

c1+co=1
ciry + corg = 25 4+ 2P 4 25D,
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Solving the system, we obtain
25 4 2P 4 25+p _ 25+p—1 + %\/4s+p + 28+p+2(23 + 2p)
1= \/4s+p + 28+p+2(2s 4 2p)
25+p71 95 _9p _ 9s+p + %\/43—&-]2 + 23+p+2(2s + 2p)
\/4s+p 4 25FPF2(25 4 2p) '

Hence we get the following result.

Y

(9)

Cy =

Proposition 3 (Binet’s formula). Let n,s,p > 0. Then the n-th (s,p)-
Jacobsthal number is given by

(23 4L 9P 4 23+p _ 25+p—1 4 %\/Z)T{L
VA
(2sP=1 — 25 — 20 — 257 4 L{/A)r
VA ’

where A = 4559 4 25PF2(25 1 90) py = 250714 4/ = 299071 VA,

Jn(s,p) =

(10)
+

Using Binet’s formula, we can get some identities for (s, p)-Jacobsthal
numbers.

Theorem 4 (Cassini’s identity). Let n,s,p be integers, n > 1, s,p > 0.
Then

Tn41(8,0) Tn-1(5,p) — J3(s,p) = (—1)"(2° + 2P)?(227P - 252 )=,
Proof. By formula (10) we get
Tnt1(8,0) Jn-1(5,0) = J3(5,p)
= (crrf oy ) (er? T 4 cor ) = (arr + cort)?
= clcgr’fﬂrgfl + 61027“72”17"?*1 — 2c1c9rTTYy

1 T2 _
= 6102(7"17“2)”(72 + E — 2) = 6102(7“1’/“2)n 1(7”1 — 7“2)2.

By simple calculations we obtain
— (25 4 272
45FP 4 25+pF2(25 4 29)
Using formulas (7), (8) and (11), we have
Tn1(8,9)Jn—1(5,p) — J(s,p) = (=1)"(2° + 2°)? (227 4 2°72P)n L,

(11) C1Cy =

Proposition 5. Let n,s,p be integers, n > 1, s,p > 0. Then

lim Jn+1(87p)
n—oo Jn(s, p)

_ 2s+p—1 + % 45+p + 23+p+2(25 + 2p).
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Proof. By formula (10) we have

T
. Jur1(s,p) o™ epri . art+er(2)"
lim ——————% = lim — s— = lim TN
n—00 Jn(s,p) n—oo 111" + carl n—oco 1+ C2(E)

Since lim ()" =0, we have
71 ’
n—oo

lim Jnt1(s,p)

1
— —9stp=1 4 = [ps+p 1 9s+p+2(9s 1 9p).
n—oo J,(s,p) n + 2 + (2° +29)

Theorem 6 (summation formula).

Jn(sap) + (22s+p + 28+2p)¢]n71(57p) —1-2°-2P

n—1
12 AGE) =

Proof. By Binet’s formula (10) we have

n—1

n—1
> Jils,p) =Y (err] +earl) =c
1=0

=0

n n
1 C2
1—7’1 1—7"2

c1+c2 — (cra + cory) — (earf + corly) + rlrg(clr?_l + 027“;‘_1)

(I —r1)(1—r9)
c1+c2— (ara + car1) — Jn(s,p) + rireJn—1(s, p)
1L —(ry+re) +r17m2
By formulas (4), (5) and (9) we obtain
(13) c1ry + carp = — (25 4 2P).
Using (6), (7) and (13), we get

nl 1425+ 2P — J,(s,p) — (2257 4 25720) ] (s, p)
Z Ji(37p) = 1 — 95+p — 92s5+p _ 95+2p

i=0
Hence

S o) = To)+ P 4 2N (sip) 1= -
g (3 7p - 25+p(1+2s+2p)_1 .

n

Corollary 7. For s = p = 0 we get the well-known identity for the classical
Jacobsthal numbers

nil g Jpio+2Jp01 — 3
1 2 M
=0

The next theorem presents the generating function of (s, p)-Jacobsthal
sequence.
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Theorem 8. The generating function of the sequence {J,(s,p)} has the
following form

B 14+ (2°+2P)x
1 - 25tPg — (225Fp 4 25H2p) g2

f(z)

o0
Proof. Let f(x) = > Ju(s,p)z™. Then, by recurrence relation (2), we
n=0

have

(@) = Jols,p) + Ji(s,p)x + ) Ju(s,p)z"

n=2

=1+ (2°4+2° 42517z

o0
+ ) (2P T 1 (s,p) + (22517 4+ 2°12P) T, o (s,p)) 2"

n=2

=1+ (2°+2F +25MP)g

o0 o0
+ 25FP Z Jn—1(s,p)x™ + (2%51P 4 2572P) Z Jn—a(s,p)z"

n=2 n=2
=1+ (2°+2° 425y
o (0.9}
+ 25 Py Z Jn(s,p)a™ + (2257P 4 2572p) 2 Z Jn(s,p)x"
n=1 n=0

=1+ (2°42° 4 251P)y

[e o]
+ 23 Y " T (s, p)a” — 25 4 (227HP 4 25T)a? f ().

n=>0
Thus
f(z) =1+ (2° +2P)x + 25TPx f(x) + (2257 4 25F2P) 22 £ ().
Hence
fla) = 14 (2°+2P)x
YT Doty - (2254P 4 2542p) 22’
which ends the proof. (]
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