Maclaurin-type inequalities for Riemann-Liouville fractional integrals

Fatih Hezenci, Huseyin Budak

Abstract


In the present article, an equality is established by using the well-known Riemann-Liouville fractional integrals. With the aid of this equality, some Euler-Maclaurin-type inequalities are given in the case of differentiable convex functions. Moreover, we give an example using graphs in order to show that our main result is correct.

Keywords


Quadrature formulae; Maclaurin's formula; convex functions; fractional calculus

Full Text:

PDF

References


Budak, H., Hezenci, F., Kara, H., On parametrized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral, Math. Methods Appl. Sci. 44 (30) (2021), 12522–12536.

Budak, H., Hezenci, F., Kara, H., On generalized Ostrowski, Simpson and Trapezoidal type inequalities for coordinated convex functions via generalized fractional integrals, Adv. Difference Equ. 2021 (2021), 1–32.

Davis, P. J., Rabinowitz, P., Methods of Numerical Integration, Academic Press, New York–San Francisco–London, 1975.

Dedić Lj.; Matić M., Pecarić, J., Euler-Maclaurin formulae, Math. Inequal. Appl. 6 (2) (2003), 247–275.

Dedić, Lj., Matić, M., Pecarić, J., Vukelic, A., On Euler-Simpson 3/8 formulae, Nonlinear Stud. 18 (1) (2011), 1–26.

Dragomir, S. S., On Simpson’s quadrature formula for mappings of bounded variation and applications, Tamkang J. Math. 30 (1999), 53–58.

Dragomir, S. S., On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J. Math. 22 (2000), 13–19.

Erden, S., Iftikhar, S., Kumam, P., Awan, M. U., Some Newton’s like inequalities with applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. 114 (4) (2020), 1–13.

Franjic, I., Pecarić, J., Perić, I., Vukelić, A., Euler integral identity, quadrature formulae and error estimations, Element, Zagreb, 2011.

Gao, S., Shi, W., On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math. 74 (1) (2012), 33–41.

Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer-Verlag, Wien, 1997.

Hezenci, F., Budak, H., Kara, H., New version of fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equ. 2021 (2021), Paper No. 460, 10 pp.

Hezenci, F., Budak, H., Kosem, P., On New version of Newton’s inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., to appear.

Hezenci, F., Budak, H., Some perturbed Newton type inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., to appear.

Iftikhar, S., Kumam, P., Erden, S., Newton’s-type integral inequalities via local fractional integrals, Fractals 28 (03) (2020), 2050037.

Park, J., On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci. 7 (121) (2013), 6009–6021.

Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

Noor, M. A., Noor, K. I., Iftikhar, S., Newton inequalities for p-harmonic convex functions, Honam Math. J. 40 (2) (2018), 239–250.

Pecarić, J. E., Proschan, F., Tong, Y. L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.

Sitthiwirattham, T., Nonlaopon, K., Ali, M. A., Budak, H., Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions, Fractal Fract. 6 (3) (2022), 175.




DOI: http://dx.doi.org/10.17951/a.2022.76.2.15-32
Date of publication: 2023-03-13 22:27:58
Date of submission: 2023-03-12 17:02:28


Statistics


Total abstract view - 588
Downloads (from 2020-06-17) - PDF - 446

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Fatih Hezenci