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ABSTRACT

We describe a newly constructed dual inlet system and triple collector for precision study of
sulfur isotope anomalies, A™S, using negative ion mass spectrometry. SO, gas is admitted to
the ion source where it is ionized either to SO™ or S” by low energy electrons (resonant
ionization) and the ion beam is analyzed by a single focusing magnetic analyzer. Another gas
which can be used for S and 8’'S analysis by negative ion mass spectrometry is SF¢ on
mass spectrum of SF5 ions.
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INTRODUCTION

The isotope anomalies received recently a great attention by a number of
investigators (e.g. Thiemens 2006, Thiemens & Shaheen 2013, Eiler et al. 2014 and
refs therein), therefore we propose here a novel approach in their study as described
below. By isotope anomalies we understand the deviations of S from respective
value of 0.528°*S predicted by the mass-dependent theory (Urey 1947, Bigeleisen &
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Mayer 1947). These anomalies, denoted as A™S, were first encountered in
meteorites by Hulston & Thode (1965), but later on also in some billion years old
Earth minerals (Farquhar et al. 2000). Large anomalies of A®S recorded in
Precambrian sulfides and sulfates result most likely due to ionization phenomena of
SO, and H,S in ancient Earth atmosphere. Due to severe analytical difficulties of
isotope analysis of &°S by mass spectrometry, small anomalies were not well
recognized at Earth surface level by far, except the oldest sulfur.

The goal of the present study is to overcome the most crucial difficulty by
applying negative ion mass spectrometry. With the proposed idea we will attack the
problem of the analysis of minor variations of 8*’S with negative ion spectrometry.
Dong and Tién (1989) reported that no interfering peaks occur in the mass spectrum
of S using conventional gas SO,. They were able to determine &°*S only with
analytical precision 1.5%o on a single collector mass spectrometer.

Inasmuch as the peak of mass-33 is about five times lower than peak 34,
necessary precision of 8°S determination should be enhanced several times in
comparison to that attained for 8°*S. We will try to enhance maximally the precision
of isotope ratios determination by a single focusing (R =15 cm) and triple collector
isotope ratio mass spectrometer (IRMS).

MASS SPECTROMETER

In our IRMS we have retained the alignment and electromagnet manufactured by
Nuclide, Pennsylvania, in the 70’s of the XX century, whereas the flight tube, ion
source, collector assembly and gas inlet system have been designed for the
measurements of isotope ratios. The overall view on the mass spectrometer is shown
in Fig. 1. The vacuum system comprises two rotary pumps — one for the inlet system
and one is used as backing pump for two turbo pumps of the differential ultra high
vacuum (UHV) in the flight tube. The pumping speed of these turbo pumps is 250
L/s which guaranties a dynamic vacuum during analysis at the level 10”® Torr in the
flight tube. There is also one small ion sputtering pump (pumping speed 50 L/s)
operated all the time, but it is open to the UHV only during breaks in analysis, i.e.
when the turbo pumps are turned off. All the three pumps can be isolated from the
UHV chamber by 2 manually operated all-metal valves or by a gate valve installed
at the ion source.
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Figure 1: Overall view on the 60° magnetic sector mass spectrdmeter. The inlet system is
installed at the front of this picture. The ion source is on the right side and the collector
assembly on the left. The mass spectra and isotope analyses are computer controlled.

In Fig. 2 is shown the triple collector assembly dedicated for simultaneous
collection of the 3 isotopes in S™ spectrum. The same slit system can be used for
positive ions of O,".

Figure 2: Triple collector assembly,lthe design is on the left and a photo on the right.
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Negative ions SO and S are produced from being easily prepared SO, gas in the
ion source with a hot cathode immersed in external magnetic field. The ions were
produced by low energy electrons at so-called resonance (see e.g. Hatas 2002). The
construction of this ion source will be described in detail elsewhere.

The inlet system is arranged as it is described in Halas (1979). The volume of
the standard channel is large and constant, whereas that of the sample channel is
small and variable. Such arrangement assures nearly constant pressure of the
standard over an extended time of analysis. A bellows installed in the sample
channel allows to equalize the pressure of sample gas to that of standard gas. Gas is
admitted to the ion source through SS 1/8 inch capillaries whose ends are installed in
the pneumatically operated changeover valve. A gas pressure ~20 Torr is kept in the
inlet system during analysis to assure viscous flow condition from both channels
(Halas 1980, 1982).

RESULTS AND DISCUSSION

The first results obtained on SO, gas with this new instrument look highly
promising. The obtained mass spectra of negative ions produced from SO, gas are
shown in Fig. 3. Note that peaks of SO are almost 3 times higher than those for S,
hence they are more suitable for §°S analysis. However in this case the isotopic
peak of S at mass 49 is also contributed by '"O. This is not the case in the
isotopically clean spectrum of S. Therefore this spectrum will be used for
simultaneous &S and §**S analysis using triple collector assembly.
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Figure 3: Obtained mass spectra of SO and S by scanning electric current in the
electromagnet coils. The right part of each spectrum is 10-fold magnified. The ion current
was recorded as the voltage drop on 10'" Q resistor.

Our preliminary test confirmed this conclusion. The obtained standard
deviations of the average values from ten 60-second runs were 0.5 and 0.1 permil,
respectively. Undoubtedly for too low precision of 8°°S excessive noise on high-ohm
resistor available (10'> ohms) is responsible. This resistor will be replaced by a high
quality one from OHMITE.
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We have also tested mass spectra of two other gaseous sulfur compounds,
namely hydrogen sulfide (H,S) and sulfur hexafluoride (SFs). The first of them has
no isotopically clean mass spectrum. The peaks of S™ are accompanied with HS
peaks, so *°S” is overlapped by H?’S". On the other hand, SF, is ideal gas for
measurements of high ion currents of SFs, which has isotopically pure mass
spectrum (Fluor has only one stable isotope, '°F). Moreover, this gas is practically
non-adhesive. For the above reasons it may be recommended as excellent gas for
negative IRMS (it is already used since the 60’s of the XX century in positive ion
IRMS). The preparation method of this gas by fluorination of solids sulfur
compounds is, however, more difficult than SO, preparation from sulfides
(Robinson and Kusakabe 1975) or sulfates (Halas and Szaran 1999).

CONCLUSION

We report here about a negative ion IRMS which is suitable for both §S and
8°'S measurement on the S spectrum or respective SFs™ spectrum. Initial tests of
delta measurements indicate a high possible precision, which may lead to detect
minor anomalies in sulfur isotope composition (A*S) which may exist in
geologically young minerals, particularly those formed during big 8*S sulfate
excursions of ocean in the Phanerozoic (Holser 1977, Claypool et al. 1980).
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