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Abstract  
The university course timetabling problem is hard and time-consuming to solve. Profits from 

full automatisation of this process can be invaluable. This paper describes architecture and 
operation of two automatic timetabling systems. Both are based on evolutionary algorithms, with 
specialised genetic operators and penalty-based evaluation function. The paper covers two 
problem variations (theorethical and real-world), with different sets of constraints and different 
representations. Moreover, specification of both solutions and a proposal of hybrid system 
architecture is included. 
 

1. Introduction 
Timetabling problems arouse interest of many scientists. The most popular 

methods of solving them are based on heuristics, local search techniques (mostly 
tabu search), evolutionary algorithms and reduction to graph coloring, Recently, 
the systems based on expert systems and constraint programming have become 
popular. Publications concerning heuristic methods are [1-2]. Description of 
solutions based on local search techniques is located in [3-5] (where tabu search-
based methods are described) and in [6-7] (simulated annealing). Authors of [4, 
8-13] applied evolutionary algorithms, and proposals of solutions based on graph 
coloring, and also models and heuristics applicable to this approach can be found 
in [14-21]. Description of approaches based on expert systems are located in 
[22-24]. Many of the methods mentioned are described in surveys like [12, 25].  

We present some approaches to solve large, highly constrained timetabling 
problems, based on evolutionary algorithms. In chapter 2 we describe two 
variations of the problem and constraints connected with them. The third chapter 
includes the description of specimen representation, evaluation function, 
initialization of population and approaches to solution in detail. The proposal of 
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hybrid system architecture is also included in that chapter. The last chapter 
points to directions of future work. 
 

2. Problem description 
The typical timetabling problem consists in assigning a set of events (e.g. 

classes) to a set of resources (e.g. rooms) and timeslots, satisfying a set of 
constraints of various types. Constraints stem from both nature of timetabling 
problems (e.g. two events with the same resources involved cannot be planned at 
the same time) and specificity of the institution involved.  

The problem we consider is a typical university course timetabling problem. 
It consists of set of events (classes), to be scheduled in a certain number of 
timeslots, and a set of rooms with certain features and size, in which events can 
take place. We’ve been working on two variations of this problem – the first 
variation has a defined set of students attending each event, but no constraints 
are related to teachers. In this variation the number of timeslots is 45 (5 days, 9 
timeslots each). Test sets for this variation come from the International 
Timetabling Competition. The second variation has some constraints related to 
teachers’ availability (each event has a teacher assigned and each teacher has a 
defined set of forbidden timeslots), but set of students attending each event is 
undefined (only a number of students and faculty they attend is known) and has 
to be concluded from other data. In this variation the number of timeslots is 35 
(5 days, 7 timeslots each) and each class has a defined course (the class is a part 
of particular university course). Test sets for this variation come from the 
Faculty of Computer Science and Management of Wroclaw University of 
Technology. The timetable in this case consists of almost 1000 events conducted 
by almost 200 teachers in about 40 rooms.  

A feasible timetable is one in which all the events have been assigned a 
timeslot and a room, and the following hard constraints are satisfied: 

- only one event is scheduled in each room at any timeslot (both variations), 
- the room is big enough for all the attending students and satisfies all the 

features required by the event, 
- no student attends more than one class at the same time (first variation), 
- no teacher carries on more than one class at the same time (second 

variation), 
- no teacher carries on any class in timeslot which is forbidden for him 

(second variation), 
- if particular course has only one class assigned, no class with students 

from the same faculty is scheduled at the same timeslot with this course 
(second variation). 
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In first variation there are also three soft constraints defined; they are broken 
if: 

- a student has a class in the last slot of the day (S1), 
- a student has more than two classes in a row (S2), 
- a student has a single class on a day (S3). 

 
3. Approaches tested 

All approaches we describe are based on evolutionary algorithms, which turn 
out to be useful as a general-purpose optimization tool, due to their high 
flexibility accompanied by conceptual simplicity. In this part of the paper we 
describe three conceptions with the results of their application to the problems 
illustrated earlier. In all approaches the evaluation function is based on penalty 
for breaking constraints. In the first variation we decided to represent the 
specimen (genotype) as a matrix where each row corresponds to a room and 
each column to a timeslot. Each element of the matrix (gene) may contain an 
event (no more than one – this allows us to eliminate the first hard constraint – 
only one event is scheduled in each room at any timeslot). In the second 
variation representation is direct – each gene was represented by a triple <event, 
room, timeslot> (where event represents teacher and a class). Timeslots can be 
odd and even (some classes are conducted once a fortnight). Genes are organized 
in chromosomes, and every chromosome represents one faculty. All faculties 
together form a genotype. In both approaches each genotype represents 
particular solution (timetable). Initial population can be generated randomly, 
heuristically or peckish (peckish initialization strategies are described in [2] – 
this strategy is used only in the second variation). Random generation strategy 
chooses events to be scheduled, rooms and timeslots at random; the next uses 
heuristic event sequencing strategies to create better (in terms of the evaluation 
function) initial solutions. The third strategy chooses k genes at random and 
inserts into timetable one that breaks least constraints (induces least conflicts). K 
= 1 corresponds to random initialization, while in the limit as k gets large this 
becomes equivalent to greedy initialization. Creation of population in 
subsequent generations is archived by means of classical genetic roulette, as 
described in [26].  
 

3.1. Random mutation 
In “classic” evolutionary algorithm in each iteration after selection some 

specimens are exposed to genetic operators – mutation and crossover. The 
contents of operator set and their operation depend strongly on both specifics of 
problem being solved and approach chosen. In our solution only mutation 
operators are used – it’s combined with high computational and conceptual 
complexity of recombination operator. Only places, events and timeslots can be 
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mutated – it gives us a set of three different mutation operators. We conducted 
experiments with this approach on both problem variations – test sets for the first 
variation had about four hundred events to schedule in a dozen or so rooms, the 
second variation involved about seven hundred to one thousand events, with ca. 
two hundred teachers involved, to schedule in about thirty rooms. Every iteration 
of each specimen is mutated once and operator is chosen randomly. For both 
problem variations the solution wasn’t found in reasonable time – the algorithm 
got stuck in local minimum pretty soon and was not able to escape from it. There 
are many reasons for this phenomenon. “Blind” mutation is not only able to 
improve, but also spoil the plan being mutated. The changes made may not be 
reflected in the value of evaluation function – e.g. mutation can liquidate a 
conflict (broken constraint) introducing new conflict at the same time, not 
changing the objective function value as a result of this operation. Additionally, 
selective pressure in population, where there are many conflicts in specimens, 
may be too weak, for the sake of very small differences between specimens in 
terms of evaluation function. These factors disqualify “blind” mutation as a 
solving tool for complex constraint satisfaction problems and point to more 
complex, heuristics-based methods. 
 

3.2. Directed mutation 
Despite their unquestionable assets, evolutionary algorithms don’t copy 

directly human way of thinking. Human timetabling process is an application of 
direct heuristics, based on successive augmentation – the events are inserted into 
timetable one by one, until all have been scheduled. The most constrained events 
are scheduled (and during improvement of the timetable rescheduled) first. 
Analysis of this approach allowed us to create an algorithm, which solves the 
second variation of the problem effectively.  

In this approach we use mutation operators directed by broken constraints. 
The place in genotype (triple <event, room, timeslot>), which breaks the most 
constraints (so it is most difficult to schedule) is selected to mutate. The set of 
operators was enlarged by special operator, which is able to “clean” a timeslot 
for the course, which has only one class assigned. The operators try to 
reschedule event in such a way, that they would eliminate one particular type of 
conflict, caused by this event – a dozen or so (this number was established 
arbitrary) possible variants are examined, and the one, that breaks the least 
constraints of particular type is chosen. This is an extension of the peckish 
initialization paradigm on genetic operators. The order of eliminating the 
conflicts is established after random generation of the initial population, before 
the first iteration of the algorithm – often a particular type of conflict appears in 
the initial population, the sooner algorithm tries to eliminate it. Application of 
any operator can spoil timetable in terms of both evaluation function and number 
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of constraints broken, but allows the algorithm to escape the local optima 
efficiently. During the tests on data sets described previously a feasible solution 
is found after about one thousand iterations – this number depends weakly on the 
population size. This phenomenon is caused by significant determinism of this 
approach and weak selective pressure, described earlier. The experimental 
results are shown in table 1. 

 

Table 1. Experimental results (second problem variation) 
Generation in which feasible solution is found Population 

size Highest Lowest Average (10 runs) 
1 1895 423 1101 

10 1756 453 1130 
50 1788 413 1099 

100 1770 397 1084 
500 1774 330 1054 

 

The following set of operators has been proposed to solve the first problem 
variation with the matrix representation of the specimen: 

- MOVE – chooses an event at random and moves it to random room and/or 
timeslot; probability of drawing the event is directly proportional to a 
number of constraints broken by this event; 

- ORDER – tries to sort events in timeslot chosen at random, so constraints 
concerning room features and size are satisfied; 

- REPLACE – chooses two columns (timeslots) at random and swaps them; 
this operator affects soft constraints. 

These operators allow the algorithm to leave local minima and optimize both 
soft and hard constraints. This gives the algorithm the ability to improve the 
value of the objective function constantly. We found feasible solutions for all the 
test problems. Features of datasets used are shown in table 2 and the 
experimental results in table 3. Algorithm stops when feasible solution is found. 
Table 3 shows how many soft constraints of each type have been broken on 
average in the feasible solution. 
 

Table 2. Datasets description (first problem variation) 

Problem type Small Medium 
Num events 100 400 
Num rooms 5 10 

Num features 5 5 
Approx features per room 3 3 

Percent feature use 70 80 
Num students 80 200 

Max events per student 20 20 
Max students per event 20 50 
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Table 3. Experimental results (first problem variation) 

 S1 S2 S3 
Small1 8 71 14 
Small2 13 88 30 
Small3 2 58 14 
Small4 5 67 2 
Small5 1 36 38 

Medium1 232 105 2 
 

3.3. Non-Darwinian evolutionary computation 
The disadvantages of ‘classic’ genetic algorithms, such as tendency to get 

stuck in the local optima have inclined the extension of the GA paradigm. 
Hybrid systems, which can be a mix of different methods, with changes in 
specimen representation or adaptation of genetic operators [26] can solve 
problems from different classes – classification [27], approximation or 
combinatory problems (e.g. travelling salesman problem), but they still operate 
on genotypes within the confines of the Darwinian evolution. Such evolution 
looks more like blind search than the sequence of reasonable acts [27]. The 
hybrid method which uses GA with the addition of machine learning (ML) 
module was proposed in [28]. In LEM (Learnable Evolution Model [27, 28]) GA 
produces a solution, which is evaluated and analyzed by ML module, to be 
consequently evolved by GA. The LEMMATA (LEM meant for Timetabling) 
hybrid we propose is based on LEM concept – picture 1 shows the information 
flow between GA and ML modules. After generation of initial population all 
solutions are evaluated. Then we check the stop condition of GA and analyze the 
parameters, which decide whether the data should be sent to GA or ML modules. 
GA module creates the next generation by means of selection and genetic 
operators. This cycle is repeated until the parameters dependent on solution 
quality decide to start up the ML module. It analyzes solutions and chooses, 
which are “good”, and describes them with a set of rules. The rules are used to 
create new population, which takes part in the next iteration of the algorithm. 

That model allows the algorithm to improve its speed, because only “good” 
timetables are chosen to generate new generation in the exit point of ML 
module. Quality of solutions also improves, thanks to the rule-based generation 
of descendant population. LEMMATA have been implemented already – the 
experimental results with this model can be found in [29]. 
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Fig. 1. LEMMATA operation schema 

 
That model allows the algorithm to improve its speed, because only “good” 

timetables are chosen to generate new generation in the exit point of ML 
module. Quality of solutions also improves, thanks to the rule-based generation 
of descendant population. LEMMATA have been implemented already – the 
experimental results with this model can be found in [29]. 
 

4. Conclusions and future work 
GA-based systems are good alternative for solutions of university course 

timetabling problems based on heuristics or local search techniques. Solving 
large, highly constrained problems using only the “blind” mutation operator 
seems rather impossible, but taking advantage of specialized genetic operators, 
adjusted to specificity of the problems allows finding feasible solution relatively 
fast. Future work on that field will concern hybrid systems, such as LEMMATA, 
described in this paper. 
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