Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

Annales UMCS

RCILTN

o)

% % AnnalesUMCS InformaticaAl 1 (2003) 303-308 Informatica
RSN Lublin-Polonia
Sectio Al

http://www.annales.umcs.lublin.pl/

Concurrent programming and futures

Andrzej Daniluk’

Institute of Physics, Maria Curie-Skfodowska University,
Pl. M.Curie-Skfodowskigj 1, 20-031 Lublin, Poland

Abstract
If we are manage complexity, we must create a model of the universe. The goal of model isto
create a meaningful abstraction of the real world. Such an abstraction should be simpler than the
real world but should also reflect accurately the real world so that we can use the model to predict
the behavior of things in the real world. The object-oriented software design is about building
good models. It consists of two significant pieces. a modelling language and process. In the
present paper anew and little-known approach for concurrent programming is presented.

1. Introduction

The modelling language is the least important aspect of object-oriented
analysis and design; unfortunately, it tends to attract the most attention. A
modelling language is nothing more than a convention for how we'll draw our
model on paper. The process of object-oriented analysis and design is much
more complex and important than the modelling language; as an industry, we' ve
decided to use the UML (Universal Modelling Language) as a commercial
product from Rational Software, Inc. The process of software design is iterative.
It means that as we develop software, we go through the entire process
repeatedly as we strive for enhanced understanding of the requirements. The
design directs the implementation, but the details uncovered during
implementation feed back into the design. Most important, we do not try to
develop any sizable project in a single, orderly, straight line; rather, we iterate
over pieces of the projects, constantly improving our design and refining our
implementation [1-2]. The goal of this work is to produce code that meets the
stated requirements and that is reliable, extensible, and maintainable.

" E-mail address: adaniluk@tytan.umcs.lublin.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

2. Concurrent programming

The future of programming is concurrent programming. Not too long ago,
sequential, command-line programming gave way to graphical, event-driven
programming and now singlethreaded programming is vyielding to
multithreaded programming.

Borland C++ Builder and Borland Delphi includes features to support
concurrent programming-not as much support as we find in Ada, but more than
in most traditional programming languages. In addition to the language features,
we can use the Windows API and its threads, process, futures, and so on [1, 3].

3. Threads and processes

A thread isaflow of control in aprogram. A program can have many threads,
each with its own stack, its own copy of the processor register, and related
information. On a multiprocessor system, each processor can run a separate
thread. On a uniprocessor system, Windows and Linux create the illusion that
threads are running concurrently, though only one thread at atime getsto run.

A process is a collection of threads all running in a single address space.
Every process has at least one thread, called the main thread. Threads in the
same process can share resources such as open files and can access any valid
memory address in the process address space.

4. The TThread class and BeginThread() function

The easiest way to create a multithread application in C++ Builder or Delphi
isto write athread class that inherits from TThread. TThread classis not part of
the C++ Builder and Delphi languages, but is declared in the Classes.hpp or
Classes.pas units [1, 3-4]. Example 4.1 shows the declaration for the TThread
class.

Example 4.1. Using the TThread class

#ifndef TPrintThreadH
#define TPrintThreadH
1
#include <StdCtrls.hpp>
#include <ExtCtrls.hpp>
#include <Dia ogs.hpp>
#include <Forms.hpp>
#include <Controls.hpp>
#include <Graphics.hpp>
#include <Classes.hpp>
#include <SysUtils.hpp>
#include <M essages.hpp>
#include <Windows.hpp>

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

#include <System.hpp>
I
class TTPrintThreadForm : public TForm

{

__published:

TButton *Buttonl;

TLabel *Label1;

TBevel *Bevell;

TBevel *Bevel2;

TBevel *Bevel3;

TLabel *Label2;

TLabel *Label3;

void __ fastcall ButtonPrint(TObject * Sender);

private:
int ThreadsRunning;
void _ fastcall ThreadDone(TObject * Sender);

public:
void __fastcall PrintArray(TPaintBox *Box, constint *A, const int A_Size);

.
I

typedef int TPrintArray[225];

typedef TPrintArray *PPrintArray;
I
extern TTPrintThreadForm * TPrintThreadForm;
Il
#endif

If we don’t want to write a class, we can use BeginThread() function. We are
wrappers for the Windows API calls CreateThread() function, but we must use
C++ Builder's and Delphi’s functions instead of the Windows API directly. C++
Builder and Delphi keeps a global flag, IsMultiThread, which is true if our
program calls BeginThread() or starts athread using TThread class. C++ Builder
and Delphi check this flag to ensure thread safety when allocating memory. If
we call the CreateThread() function directly be sure to set IsMultiThread to true.
Example 4.2 shows the declaration for the BeginThread() function.

Example 4.2. Using the BeginThread() function for calculate of sinl() function

#include <vcl.h>
#include <math.h> #pragma hdrstop
#include "Unit_26.h"

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

#pragma package(smart_init)
#pragma resource "*.dfm"

TForml *Formi,;
LONG Run_Thread = 0;
UINT Thread ID;
HANDLE hEvent;

SECURITY_ATTRIBUTES security_attrib = {
sizeof(SECURITY_ATTRIBUTES),
NULL,
TRUE
|3
I
__fastcall TForm1::TForm1(TComponent* Owner)
: TForm(Owner)
{

}
I

void __fastcall TForm1::FormCreate(TObject * Sender)

Memol->Lines->Clear();
}
Il
int__ fastcall Count_Sin(LPVOID Parameter)

long double y, x=0.0;
for(;;)
{
y =sinl(x*M_P1/180);
Form1->Memol->Lines->Add(FloatToStr(x)+
"+FloatToStr(y));
WaitForSingleObject((LPVOID)Run_Thread, 100);
X+=1.0;//x=x+1
}

}
I

void __ fastcall TForm1::Button1Click(TObject * Sender)
{
Run_Thread = BeginT hread(& security_attrib, 4096,
Count_Sin, this, CREATE_SUSPENDED,
Thread ID);
if(Run_Thread == (int)INVALID_HANDLE_VALUE)
{
MessageBox(0, "Thread ERROR", "ERROR", MB_OK);

}
dse{

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

ResumeT hread((LPVOID)Run_Thread);

hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

if (hEvent) {
WaitForSingleObject(hEvent, 100 /*ms*/);
CloseHandle(hEvent);
Buttonl->Enabled = FALSE;

}

}

}
I

void __fastcall TForm1::Button2Click(TObject * Sender)

SuspendThread((L PV OID)Run_Thread);

}
I

void __ fastcall TForm1::Button4Click(TObject * Sender)

ResumeT hread((LPVOID)Run_Thread);

}
I

void __fastcall TForm1::Button3Click(TObject * Sender)

CloseHandlg((LPVOID)Run_Thread);
Application->Terminate();
}
I

5. Futures

Writing a concurrent program can be more difficult than writing a sequential
program. We need to think about race conditions, synchronization, shared
variables, and others. Futures help reduce the intellectual clutter of using
threads. A future is an object that promises to deliver a value sometime in the
future. The application does its work in a main thread and calls upon futures to
fetch or compute information concurrently. The future does its work in a
separated thread, and when the main thread needs the information, it gets from
the future object. For example, we can define the future class by inheriting from
TFuture and overriding the Compute method. The Compute method does
whatever work is necessary and returns its result as a Variant type [2]. Example
5.1 shows the declaration for the TFuture class.

Example 5.1 Declaration of the TFuture class

class TFuture

L
private:

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

System:: TObject* _ fastcall ExceptObject(void);
void * fExceptAddr;
HANDLE fHandle;
bool fTerminated;
LongWord fThreadID;
LongWord fTimeOut;
Variant fValue;
bool __ fastcall GetlsReady(void);
bool __fastcall GetValue(void);

protected:
void __fastcall RaiseException(void);

public:
virtual void __fastcall AfterConstruction(void);
Variant __ fastcall Compute(void);
void __ fastcall Terminate(void);
__property HANDLE handle={ read=fHandl€} ;
__property bool IsReady={ read=Getl sReady} ;
__property bool Terminated={ read=fTerminated, write=fTerminated};
__property LongWord Threadl D={ read=fThreadI D} ;
__property LongWord TimeOut={ read=f TimeOut, write=fTimeOut};
__property Variant Value={ read=GetValue} ;

When the application needs the future, it reads the Vaue property and the
GetValue method waits until the thread is finished. If the thread raised an
exception, the future object reraises the same exception object at the origina
exception address. If in application everything goes as planned, the future value
isreturned asaVariant type.

6. Summary

In this paper the technique of programming by futuresis presented. The major
advantage of using futures is their simplicity. We can often implement the
TFuture-derived class as asimple, linear subroutine. Using a future is as simple
as accessing a property. All the synchronization is handled automatically by
TFuture. Concurrent programming can be tricky, but with care and caution, we
can write application that uses threads and process correctly, efficiently, and
effectively. Using a future is as simple as accessing a property. It is worth
noticing that the synchronization is handled automatically by futures.

References

[1] Lischner R., Delphi in a Nutshell, O’ Reilly & Associates, Inc., (2000).

[2] Liberty J., Teach Yourself C++ in 21 Days (4th Edition), SAMS, (2000).

[3] Daniluk A., C++ Builder 6. Cwiczenia zaawansowane, Helion, (2003), in Polish.
[4] Daniluk A., C++ Builder. Kompendium programisty, Helion, (2003), in Polish.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.tcpdf.org

