

Annales UMCS Informatica AI 1 (2003) 303-308
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Concurrent programming and futures

Andrzej Daniluk∗

Institute of Physics, Maria Curie-Skłodowska University,

Pl. M.Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract
If we are manage complexity, we must create a model of the universe. The goal of model is to

create a meaningful abstraction of the real world. Such an abstraction should be simpler than the
real world but should also reflect accurately the real world so that we can use the model to predict
the behavior of things in the real world. The object-oriented software design is about building
good models. It consists of two significant pieces: a modelling language and process. In the
present paper a new and little-known approach for concurrent programming is presented.

1. Introduction
The modelling language is the least important aspect of object-oriented

analysis and design; unfortunately, it tends to attract the most attention. A
modelling language is nothing more than a convention for how we’ll draw our
model on paper. The process of object-oriented analysis and design is much
more complex and important than the modelling language; as an industry, we’ve
decided to use the UML (Universal Modelling Language) as a commercial
product from Rational Software, Inc. The process of software design is iterative.
It means that as we develop software, we go through the entire process
repeatedly as we strive for enhanced understanding of the requirements. The
design directs the implementation, but the details uncovered during
implementation feed back into the design. Most important, we do not try to
develop any sizable project in a single, orderly, straight line; rather, we iterate
over pieces of the projects, constantly improving our design and refining our
implementation [1-2]. The goal of this work is to produce code that meets the
stated requirements and that is reliable, extensible, and maintainable.

∗ E-mail address: adaniluk@tytan.umcs.lublin.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

UM
CS

2. Concurrent programming
The future of programming is concurrent programming. Not too long ago,

sequential, command-line programming gave way to graphical, event-driven
programming and now single-threaded programming is yielding to
multithreaded programming.

Borland C++ Builder and Borland Delphi includes features to support
concurrent programming-not as much support as we find in Ada, but more than
in most traditional programming languages. In addition to the language features,
we can use the Windows API and its threads, process, futures, and so on [1, 3].

3. Threads and processes
A thread is a flow of control in a program. A program can have many threads,

each with its own stack, its own copy of the processor register, and related
information. On a multiprocessor system, each processor can run a separate
thread. On a uniprocessor system, Windows and Linux create the illusion that
threads are running concurrently, though only one thread at a time gets to run.

A process is a collection of threads all running in a single address space.
Every process has at least one thread, called the main thread. Threads in the
same process can share resources such as open files and can access any valid
memory address in the process address space.

4. The TThread class and BeginThread() function
The easiest way to create a multithread application in C++ Builder or Delphi

is to write a thread class that inherits from TThread. TThread class is not part of
the C++ Builder and Delphi languages, but is declared in the Classes.hpp or
Classes.pas units [1, 3-4]. Example 4.1 shows the declaration for the TThread
class.

Example 4.1. Using the TThread class

#ifndef TPrintThreadH
#define TPrintThreadH
//--
#include <StdCtrls.hpp>
#include <ExtCtrls.hpp>
#include <Dialogs.hpp>
#include <Forms.hpp>
#include <Controls.hpp>
#include <Graphics.hpp>
#include <Classes.hpp>
#include <SysUtils.hpp>
#include <Messages.hpp>
#include <Windows.hpp>

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

UM
CS

#include <System.hpp>
//--
class TTPrintThreadForm : public TForm
{
__published:
TButton *Button1;
TLabel *Label1;
TBevel *Bevel1;
TBevel *Bevel2;
TBevel *Bevel3;
TLabel *Label2;
TLabel *Label3;
void __fastcall ButtonPrint(TObject *Sender);
...

private:
int ThreadsRunning;
 ...
void __fastcall ThreadDone(TObject *Sender);

public:
 void __fastcall PrintArray(TPaintBox *Box, const int *A, const int A_Size);
 ...
};
//--
typedef int TPrintArray[225];

typedef TPrintArray *PPrintArray;
//--
extern TTPrintThreadForm *TPrintThreadForm;
//--
#endif

If we don’t want to write a class, we can use BeginThread() function. We are
wrappers for the Windows API calls CreateThread() function, but we must use
C++ Builder’s and Delphi’s functions instead of the Windows API directly. C++
Builder and Delphi keeps a global flag, IsMultiThread, which is true if our
program calls BeginThread() or starts a thread using TThread class. C++ Builder
and Delphi check this flag to ensure thread safety when allocating memory. If
we call the CreateThread() function directly be sure to set IsMultiThread to true.
Example 4.2 shows the declaration for the BeginThread() function.

Example 4.2. Using the BeginThread() function for calculate of sinl() function

#include <vcl.h>
#include <math.h> #pragma hdrstop
#include "Unit_26.h"

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

UM
CS

#pragma package(smart_init)
#pragma resource "*.dfm"

TForm1 *Form1;
LONG Run_Thread = 0;
UINT Thread_ID;
HANDLE hEvent;

SECURITY_ATTRIBUTES security_attrib = {
 sizeof(SECURITY_ATTRIBUTES),
 NULL,
 TRUE
};
//---
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
}
//---
void __fastcall TForm1::FormCreate(TObject *Sender)
{
 Memo1->Lines->Clear();
}
//---
int __fastcall Count_Sin(LPVOID Parameter)
{
 long double y, x=0.0;
 for(;;)
 {
 y = sinl(x*M_PI/180);
 Form1->Memo1->Lines->Add(FloatToStr(x)+
 " "+FloatToStr(y));
 WaitForSingleObject((LPVOID)Run_Thread, 100);
 x += 1.0; // x = x + 1
 }
}
//---
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 Run_Thread = BeginThread(&security_attrib, 4096,
 Count_Sin, this, CREATE_SUSPENDED,
 Thread_ID);
 if(Run_Thread == (int)INVALID_HANDLE_VALUE)
 {
 MessageBox(0, "Thread ERROR", "ERROR", MB_OK);
 }
 else {

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

UM
CS

 ResumeThread((LPVOID)Run_Thread);
 hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 if (hEvent) {
 WaitForSingleObject(hEvent, 100 /*ms*/);
 CloseHandle(hEvent);
 Button1->Enabled = FALSE;
 }
 }
}
//---
void __fastcall TForm1::Button2Click(TObject *Sender)
{
 SuspendThread((LPVOID)Run_Thread);
}
//---
void __fastcall TForm1::Button4Click(TObject *Sender)
{
 ResumeThread((LPVOID)Run_Thread);
}
//---
void __fastcall TForm1::Button3Click(TObject *Sender)
{
 CloseHandle((LPVOID)Run_Thread);
 Application->Terminate();
}
//---

5. Futures
Writing a concurrent program can be more difficult than writing a sequential

program. We need to think about race conditions, synchronization, shared
variables, and others. Futures help reduce the intellectual clutter of using
threads. A future is an object that promises to deliver a value sometime in the
future. The application does its work in a main thread and calls upon futures to
fetch or compute information concurrently. The future does its work in a
separated thread, and when the main thread needs the information, it gets from
the future object. For example, we can define the future class by inheriting from
TFuture and overriding the Compute method. The Compute method does
whatever work is necessary and returns its result as a Variant type [2]. Example
5.1 shows the declaration for the TFuture class.

Example 5.1 Declaration of the TFuture class

class TFuture
{
 private:

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

UM
CS

 System::TObject* __fastcall ExceptObject(void);
 void * fExceptAddr;
 HANDLE fHandle;
 bool fTerminated;
 LongWord fThreadID;
 LongWord fTimeOut;
 Variant fValue;
 bool __fastcall GetIsReady(void);
 bool __fastcall GetValue(void);
 protected:
 void __fastcall RaiseException(void);
 public:
 virtual void __fastcall AfterConstruction(void);
 Variant __fastcall Compute(void);
 void __fastcall Terminate(void);
 __property HANDLE handle={read=fHandle};
 __property bool IsReady={read=GetIsReady};
 __property bool Terminated={read=fTerminated, write=fTerminated};
 __property LongWord ThreadID={read=fThreadID};
 __property LongWord TimeOut={read=fTimeOut, write=fTimeOut};
 __property Variant Value={read=GetValue};
};

When the application needs the future, it reads the Value property and the
GetValue method waits until the thread is finished. If the thread raised an
exception, the future object reraises the same exception object at the original
exception address. If in application everything goes as planned, the future value
is returned as a Variant type.

6. Summary
In this paper the technique of programming by futures is presented. The major

advantage of using futures is their simplicity. We can often implement the
TFuture-derived class as a simple, linear subroutine. Using a future is as simple
as accessing a property. All the synchronization is handled automatically by
TFuture. Concurrent programming can be tricky, but with care and caution, we
can write application that uses threads and process correctly, efficiently, and
effectively. Using a future is as simple as accessing a property. It is worth
noticing that the synchronization is handled automatically by futures.

References
[1] Lischner R., Delphi in a Nutshell, O’Reilly & Associates, Inc., (2000).
[2] Liberty J., Teach Yourself C++ in 21 Days (4th Edition), SAMS, (2000).
[3] Daniluk A., C++ Builder 6. Ćwiczenia zaawansowane, Helion, (2003), in Polish.
[4] Daniluk A., C++ Builder. Kompendium programisty, Helion, (2003), in Polish.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:18:17

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

