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Abstract 

Three simulation algorithms of Turing machines by means of real recursive functions are 
proposed. Moore’s shifting mapping GS is used to this end. The relationship between a simulation 
dimension and classes of η -hierarchy is established.  
 

1. Introduction 
The well known models of effective computability such as Turing machines 

(1936), Post’s algorithms (1943), partial recursive functions (1931), the Markow 
normal algorithms (1954), Church’s λ  – calculus (1936), the Sheperdson – 
Sturgis random – access machines (1963) and unlimited register machines were 
previously introduced. All the models of effective computability are equivalent 
mutually with respect to their computational abilities. 

The Turing machines were the most useful model to point out complexity 
classes of some problems. Lately several types of Turing machines, which can 
solve some problems undecidable by the classical Turing machines, were 
introduced [1-3]. 

Quite other investigations are related to the real recursive functions. The 
reason for these studies is first to give a model of analog computation, and 
second to obtain analog characterization of classical complexity classes. It has 
been also shown that classical halting problem is analog solvable [4]. This paper 
deals with a simulation problem of classical Turing machines by means of real 
recursive functions [5]. The three simulation algorithms by means of recursive 
functions proposed here are detailed versions of Moore’s work [6]. Such 
simulation is the first step for the better analysis of complexity classes as well as 
a problem of nondeterminism.  
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2. Basic notions 
Let us recall at the beginning the well known notion of Turing machine which 

will be used in further considerations.  
 

Definition 2.1. The Turing machine TM is defined as the following tuple: 
; where 0 f( ,Q, ,q ,q )Σ δ { }0 1 ms ,s , ,sΣ = … , , and m 1≥ { }0 1 kQ q ,q , q= … , , 

are the set of type symbols and the states, 
k 1≥

{ }: Q Q 1, 1δ Σ× →Σ× × − +  is a partial 
function called a transition function, and -1 and +1 are the symbols which 
indicate the left and right side movement of the head, q0 and qf denote the initial 
and final states, respectively. 

We denote a temporary description of the Turing machine with: , where 
 is the current state TM, and  is the two-side infinite string written in 

the tape. We suppose that the head observes the first from the symbol of the 
string

1 2α qα
∈q Q 1 2α α

2α . 
We define the Turing machines work as follows way. Let 

1 2 1−… … … …i i nx x x qx x  be the Turing machines temporary description. For 
 we have: ( ) (, , ,iq x p y= −δ )1 1 2 1 1 2 1i i n i nx x x qx x x x px y x− −→… … … … … … … … ; 

however for ( ) ( ), , ,iq x p y 1= +δ  we have:  1 2 1i i nx x x qx x− →… … … …

1 2 1i nx x x yp x−→… … … … . 
Now let us recall the basic definition relating to the recursive functions over 

reals. In particular, we describe η -hierarchy which gives the number of nesting 
limits in the definition of a given function. This hierarchy is a tool to describe 
the computational hardness of function. The class of real recursive functions has 
been introduced by Moore [5], it is a generalization of natural recursive 
functions [7, 8] to the real numbers and then modified by Mycka and Costa in 
[4]. Let us recall a definition from [4].   

 
Definition 2.2. The set of real recursive vectors is the least set generated from 
the real recursive scalars 0, 1, -1 and the real recursive projections 

, by the operators: ( )1, , , 1 , 0n
i n iI x x x i n n= ≤ ≤ >…

1. Composition: if f is a real recursive vector with n k-ary components and g 
is a real recursive vector with k m-ary components, then the vector with n 
m-ary components ( )1 i n≤ ≤  

 ( ) ( )( )1 1... . ,..., ,..., ,...,i m i i m k mx x f g x x g x xλ  
 is real recursive. 
2. Differential recursion: if f is a real recursive vector with n k-ary 

components and g is a real recursive vector with n k+n+1-ary components, 
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then the vector h of n k+1-ary components which is the solution of the 
Cauchy problem for 1 i n≤ ≤  

 ( ) ( )1 1, , ,0 , ,i k i kh x x f x x=… … , 

 ( ) ( ) ( )( )1 1 1 1 1, , , , , , , , , , , , , , ,y i k i k k n kh x x y g x x y h x x y h x x y∂ =… … … … …   

 is real recursive whenever h is of the class  on the largest interval 
containing 0 in which a unique solution exists. 

1C

3. Infinite limits: if f is a real recursive vector with n k+1-ary components, 
then the vectors h, h  with n k-ary components "' , h ( )1 i n≤ ≤  

 ( ) ( )1 1, , lim , , ,i k i ky
h x x f x x y

→∞
=… … , 

 ( ) ( )'
1 1, , liminf , , ,i k i ky

h x x f x x y
→∞

=… … , 

 ( ) ( )"
1 1, , limsup , , ,i k i k

y
h x x f x x y

→∞
=… …  

 are real recursive, whenever these limits are defined for all 1 . i n≤ ≤
4. Arbitrary real recursive vectors can de defined by assembling scalar real 

recursive components of the same arity. 
5. If f is a real recursive vector, then each of its components is a real recursive 

scalar. 
The first important remark to the above definition is connected with a 

cardinality of the set of real recursive functions. Because every function has at 
least one finite syntactical description, hence the number of real recursive 
functions is countable. In this way we can observe that the system of functions 
given by our definition is constructive and not too large (not all real functions 
are captured by it, and, in fact, an uncountable number of real functions is left 
outside). 

Let us discuss carefully the details of the definition. For a differential 
recursion we restrict a domain to an interval of continuity. This will preserve the 
analyticity of functions in the process of defining.  

The natural measure of a function difficulty can be joined with a degree of 
discontinuity. The above considerations lead us to the conception of η -
hierarchy which describes the level of nesting limits in the definition of a given 
fu

n
start wi the bas

nction. 
We should start with the notion of syntactic n-ary descriptions of real 

recursive vectors. Let us introduce some kind of symbols called basic descriptors 
for all basic real recursive functions. The combination of such descriptions for 
given real recursive functions will form a new description of another functio . 
Let us th ic functions: j

ki  as a k-ary description for projection j
kI  

for all 1 i k≤ ≤ ; 1 , 1 ,0k k k  are k-ary descriptions for constants 1, -1, 0 used with k 
variables. We must add also operator symbols (descriptors) for all introduced 
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operators: dr – for a differential recursion, c – for a composition, l, ls, li for a 
respective kind of limits (lim, lim sup, lim inf). 

Now the collection of descriptions of real recursive vectors can be inductively 
defined as follows: j

ni ,1 ,1 ,0n n n  are n-ary descriptions of j
nI , 1 j n N≤ ≤ ∈ , 

1, , .1nx x…λ , 1, , . 1nx x −…λ , 1, , .0nx x…λ  for all ( )1, , ,n
nx x R n N∈ ∈… , 

respectively. If 1, , mh h h= …  is a k-ary description of the real recursive 
vector h and 1, , kg g g= …  is a n-ary description of the real recursive vector 

g, then ( ),c h g  is a n-ary description of the composition of h and g. For 

differential recursion we can write: if 1, , nh h h= …  is a k-ary description of 
the real recursive vector h and 1, , ng g g= …  is a k+n+1-ary description of 

the real recursive vector g, then ( ),dr h g  is a k+1-ary description of the 
solution of the Cauchy problem for h, g (if such a solution exists). Finally, if 

1, , mh h h= …  is a n+1-ary description of the real recursive vector h, then 

( ) ( ) ( ), ,l h li h ls h  is a n-ary description of an appropriate infinite limit 
(respectively lim, lim inf, lim sup) of h (if such limits exist). 

 
Definition 2.3. For a given n-ary description s of a vector f, let ( )k

iE s  (the η -
number with respect to i-th variable of the k-component) be defined as follows: 

1. ( ) ( ) ( )1 1 10 1 1i n i n i nE E E= = 0= ; 

2. ( )( ) ( ) ( )( )1, maxm m
i j k jE c h g E h E g≤ ≤= + j

i i , where h is a n 

components k-ary vector and g is a k-components m-ary vector; 
3. for a differential recursion we distinguish two cases: 

- : i k≤

( )( )
( ) ( ) ( ) ( )(
( ) ( ))

1 1 1 1
1 1

1 1
1 1 1

,

max , , , , , ,

, ,+ +

=

… …

…

j
i

i i n i i

k k n

E dr f g

E f E f E g E g

E g E g        

n  

-  1i k= +

( )( ) ( ) ( )( )( )1 1
0 1 1 1, max max , ,j

i m n k m kE dr f g E g E g≤ ≤ + + + += … m n  

where f is a n components k-ary vector and g is a n components k+n+1-ary 
vector; 
4. ( )( ) ( )( ) ( )( ) ( ) ( )( )1max , 1k k k k k

i i i i nE l h E li h E ls h E h E h+= = = + , 

where h is a k components n+1-ary vector. 
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Definition 2.4. η -hierarchy is a family of ( ){ }:jH f f j= ≤η , where 

( ) ( )max max k
k i iE h E h= i n≤ ≤ for 1 , 1 k m≤ ≤  and ( )fη  is the minimum 

of ( )E h  for all possible descriptions of the function f. 
Let us recall some propositions of real recursive functions from work [4]. 
 

Proposition 2.5. The functions +, ×, –, exp, sin, cos, 1.x
x

λ , /, ln, . yxy xλ  are real 

recursive functions, and all are in . 0H
 
Proposition 2.6. The Kronecker δ  function, the signum function, the absolute 
value, the Heaviside Θ  function (equal to 1 if , otherwise 0), and the floor 
function 

0x ≥
x⎢ ⎥⎣ ⎦  are real recursive functions from 1H . 

Now let us recall a mapping GS due to C. Moore in [6] which will be needed 
in further considerations. Let ( )2 1 0 1 2. ia a a a a a a− − = =… …  be an arbitrary 
sequence over Σ . Let us define mapping GS as follows: 

( ) ( )( ): F aa a G→∂ +Φ a n1, where : nG →Σ Σ  and { }: 1,nF → − +Σ 1 . Here F is 
a map from a to the integers, and G is a map from a to finite sequences. 
Furthermore, we require the fact that F and G depend on a finite number of cells 
in a. We will call this area of a the domain of dependence (DOD). The notation 

( )a G a+  can be understood in the way that a finite number of cells in a is 
replaced with the sequence ( )G a , and ∂  denotes a shift of the sequence to the 
left or right by the amount ( )F a . For ( ) 1F a = +  is the shift of one position to 
the left side direction from the dot and for ( ) 1F a = −  is the shift of one position 
to the right side direction from the dot. 
 

3. Simulation 
The generalized shifting mapping GS can simulate a Turing machine. To 

obtain a shifting mapping GS which would simulate a Turing machine we should 
adopt a transformation method with the G following premise. Let us introduce a 
coding function of sequences over Σ  which are written on the tape of the Turing 
machine 0( , , , , )fQ q qΣ δ , where { }0 1, , , ms s s=Σ …  and { }0 1, , fQ q q q= … . The 

symbols of Σ  and of Q will be coded as successive digits of a coding system 
where { }max , 1n m f= +  cardinality. Let ( ) 2 1 0 1 2.ia a a a a a a− −= =… …  be the 

                                                 
1 The function Φ has as the domain of a set of two side infinite strings over Σ and the identical 
counterdomain. 
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tape code TM and ( ) 2 1 0 1 2.s s
ia a a a sa a a− −= =… …  be the tape code Turing 

machine with the internal state Turing machine. Let ( ) 1 0.s
iDOD a a sa−=  be the 

finite sequence ( )s
ia , which is the area of transformation . G

( )s
iF a  – defines a movement of the head: +1 in the right side direction, -1 in 

the left side direction. 
 

Definition 3.1. Let G be specified as follows:  

 ( ) ( )
( )

' '
1 0

' '
1 0

. ,

. ,

s
is

i s
i

a a s for F a
G a

s a a for F a

−

−

⎧ 1

1

= +⎪= ⎨
= −⎪⎩

, 

where  (new symbol) and '
0a 's  (new state) are determined by the transition 

function ( ) ( )' '
0 0, ,a s a s r→δ ,  of the Turing machine respectively.  

 
Lemma 3.2. The shifting mapping GS with G and F defined above simulates the 
Turing machine. 
 
Example 3.3.  

We present the construction of generalized shift mapping for the problem of 
binary successor. Let us define a Turing machine TM2: 0( , , , , )fQ q qΣ δ  as 

follows: { }0,1,2=Σ , 2 represent the empty symbol, { }0,1,2Q = , 0 is an initial 
state, 2 is a final state and 1 is a modification state (the Turing machine goes 
over type symbols from the right to the left and makes necessary changes). 

The transition function δ  of TM and mapping GS are shown in Tables 
1 and 2. 
 

Table 1. Transition function δ  of Turing machine 

Lp. ( ),QΣ  { }( ), , 1, 1Q + −Σ  

1 (1, 0) (1, 0, +1) 
2 (0, 0) (0, 0, +1) 
3 (2, 0) (2, 1, –1) 
4 (1, 1) (0, 1, –1) 
5 (0, 1) (1, 2, +1) 
6 (2, 1) (1, 2, –1) 

                                                 
2 The sets Q and Σ have identical member, but with the different meaning: the elements of Q are 
states and the elements of Σ are ciphers. 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 03:22:33

UM
CS



 Three simulations of Turing machines with the use … 107 

Table 2. Mapping GS for δ  

 Lp. 1 0.a sa−  ( )G a  ( )F a  

1 2.01       2.10 +1 
2 1.01 1.10 +1 I 
3 0.01 0.10 +1 
4 2.00 2.00 +1 
5 1.00 1.00 +1 II 
6 0.00 1.00 +1 
7 1.02 1.12 –1 

III 
8 0.02 1.02 –1 
9 2.11 1.20 –1 
10 1.11 1.10 –1 IV 
11 0.11 1.00 –1 
12 2.10 2.12 +1 
13 1.10 1.12 +1 V 
14 0.10 0.12 +1 

VI 15 2.12 2.21 –1 
 

In the above example three different symbols can be written on a tape of TM. 
As during the definition of a transformation G, additionally we should take into 
account the preceding symbol with respect to the observed one on the tape, 
therefore we obtain three situations instead of one. That is why for a singular 
change of the transition function δ  we should define G and F for three different 
arguments. The consecutive instructions of a transition function δ  correspond to 
instructions of particular sections of mapping GS. Some situations on the tape 
are impossible. Thus in sections III and VI there are less than three instructions. 
For instance, section III corresponds to the third instruction in Table 1. This 
instruction is defined for the state 0 (the Turing machine goes over the tape the 
symbols from the left to the right without changing them) and observed symbol 
2. In this case the appearance of 2 before the head is impossible. The above 
situation denotes that the input of the Turing machine is empty. Therefore we 
have here two instructions. Similarly in section VI we have only one possible 
situation.   

Now let us illustrate how the mapping GS simulates an activity of the Turing 
machine. A single step will be written in the following form:  

  ( ) ' ' ' ' '
2 1 0 1 2 1 0 1 2 1 0 1. .

G F
a a sa a a G a sa a a a s a a− − − − − −→ →… … … … … . …

Let an input tape of the Turing machine have the form  
 T: 2 1 0 1. 222.1101222ia a a a a− −= =… … … …

…
 

then we start with:  2 1 0 1. 222.01101222s
ia a a sa a− −= =… … …

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 03:22:33

UM
CS



Monika Piekarz 108

The successive steps of GS have the form:  

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2.01 2.01 1.01

1.01 1.00 1.00

0.01 0.01 1.02

1.02

222.01101222 222.10101222 2221.0101222

2221.1001222 22211.001222 22211.001222

222110.01222 222110.10222 2221101.0222

2221101.1222

G F

F G

G F

F

→ →

→ →

→ →

→

… … … … … …

… … … … … …

… … … … … …

… …
( ) ( )

( ) ( )

0.11 0.11

1.10 1.10

222110.11222 222111.00222

22211.100222 22211.120222 222111.20222

G F

G F

→ →

→ →

… … … …

… … … … … …

G

F

G

→

→

→

Therefore, for 1101 writing on the start of the Turing machine we receive 
number 1110.  

Now let us summarize the results relating to simulating of the Turing machine 
by a function R R→ . Let us assume that the two-side infinite string: 

 with a base equal to n is transformed in to a right side infinite 
string of the form: . Now we are able to assign a real number 

 to the above sequence.  

2 1 0 1 2.a a a a a− −… …

0 1 1 2 2 30.a a a a a a− − − …

[ ]0,1ax ∈
 

Lemma 3.4. Let Φ  be a shifting mapping of GS, where ( ) 1 0 1.DOD a a a a−= . 
Then there exists a function :GSf R R→ , such that: 

( ) ( )GS a ba b f x x= ≡ =Φ . 
 
Proof. In this proof all numbers are given in the base n. According to the 
definition of GS, first of all we replace the elements 1a− ,  and  by the 
elements 

0a 1a

( )|DODG a , where | 1.DODa a a− 0 1a= , and then we shift all the digits in a 
string with respect to F. If n is the cardinality of a coding system then we 

have: 2
1a ax n x n n a−⎢ ⎥ − =⎢ ⎥⎣ ⎦⎣ ⎦ , 00.ax n

a
n

⎢ ⎥⎣ ⎦ = , 
3 2

1
12 2 0.0a ax n x n n a a

n n

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ = = .  

Then we have 
3 2

2
| 1 0 1 2. a aa
DOD a a

x n x nx n
a a a a x n x n n

n n−

n⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥= = − + +⎢ ⎥⎣ ⎦⎣ ⎦ . 

Now the last string is transformed by G in the following way: 

 ( )
( )
( )

' '
1 1 0 |

| ' '
0 1 1 |

. ,

. ,

DOD

DOD

DOD

a a a for F a
G a

a a a for F a

−

−

⎧ 1

1

= +⎪= ⎨
= −⎪⎩

. 

The initial string  should be replaced by a new string obtained as above. 
So for 

1 0 1.a a a−

( )| 1DODF a = + , we obtain transformation: 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 03:22:33

UM
CS



 Three simulations of Turing machines with the use … 109 

' '
0 1 1 2 2 3 1 1 0 2 2 30. 0.a a a a a a a a a a a a− − − − − −→… …  and after the shift to the right we 

obtain: . As ' '
0 1 2 1 3 20.bx a a a a a a− −= … ( ) 2

|DODG a n a a a−= ' '
1 1 0

1

 and 

( ) '
| 1 0DODG a n n a a−

⎢ ⎥ =⎣ ⎦
3, then 

( ) ( )2
| |

00
DOD DODG a n G a n n

a
n

⎢ ⎥− ⎣ ⎦ = . Continuing 

the process we have ( ) '
| 1 1DODG a n a a−

⎢ ⎥ =⎣ ⎦  and ( )| 10DODG a n a−
⎢ ⎥ =⎣ ⎦ , analogously, 

as before, we have 
( ) ( )| | '

12 0.0
DOD DODG a n G a n

a
n

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ = . If we compute the sum 

of the above strings, then we obtain the first three elements of , i.e. . 
The successive elements are shifted twice: all even elements to the right and all 
odds to the left. Hence the string  is expressed by a series 

bx '
1

'
0.0 aa

1 2 30.000 0 0a a a− − − …

2 2 1

2 2
1

k k
a a

k
k

x n x n
n

−∞

+
=

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦∑
n

 and the second string  by 2 3 40.00 0 0a a a …

2 3 2 2

2 1
1

k k
a a

k
k

x n x n
n

+ +∞

+
=

⎢ ⎥ ⎢−⎣ ⎦ ⎣∑
n⎥⎦ . Therefore the final formula has the form:  

 
( )

( ) ( ) ( ) ( )2
| | | |

2

2 2 1 2 3 2 2

2 2 2 1
1 1

lim lim

DOD DOD DOD DOD
GS a

k k k km m
a a a a

k km mk k

G a n G a n n G a n G a
f x

n n
x n x n n x n x n n

n n

− + +

+ +→∞ →∞
= =

⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣= +

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ +∑ ∑

n⎥⎦

. 

For ( )| 1DODF a = −  we obtain the similar formula:  

 
( )

( ) ( ) ( )2 2
| | |

5 3

2 3 2 2 2 2 2 1

2 5 2
1 1

lim lim

DOD DOD DOD a a
GS a

k k k km m
a a a a

k km mk k

G a G a n G a n n x n x n
f x

n n
x n x n n x n x n n

n n

+ + + +

+→∞ →∞
= =

⎢ ⎥ ⎢ ⎥− ⎢ ⎥ − ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦= + +

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ +∑ ∑

n

n  

� 
This result can be used for a formulation of the following theorem: 

 
Theorem 3.5. For an arbitrary Turing machine TM: there exists the real 
recursive function :GSf R R→  belonging to 2H , that simulates this Turing 
machine. 
 

                                                 
3 where  denotes the number with digits '

1 10a a− 1a− , , 0 in the base n. '
1a

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 03:22:33

UM
CS



Monika Piekarz 110

Proof. It is shown in [4] that addition, subtraction, multiplication and power are 
the elements of 0H , whenever x⎢ ⎥⎣ ⎦  is in 1H . Defining ( )GS a bf x x=  we use a 

composition of two operations x⎢ ⎥⎣ ⎦ ; we have ( )|DODG a⎢ ⎥⎣ ⎦  which is in 2H  

because 
2

| 2DOD

xn
a yn

n

⎢ ⎥⎣ ⎦= +⎢ ⎥⎣ ⎦  is in 1H . The above limits exist, and they are 

finite and belong to 2H . For instance, we consider 
2 2 1 2 2

2 2 2 2
1 1

lim
k k k km

a a a a
k km k k

1x n x n n x n x n n
n n

− −∞

+ +→∞
= =

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦=∑ ∑ .  

This series 
2 2

2 2
1

k k
a a

k
k

1x n x n
n

−∞

+
=

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦∑
n

 is convergent because it is bounded by the 

corresponding sum 2 2
1

1
k

k

n
n

∞

+
=

−∑ . From the Weierstrass’ theorem the considered 

series is convergent. Therefore 
2 2

2 2
1

lim
k km

a a
km k

1x n x n
n

−

+→∞
=

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦∑
n

 by definition 2.3 is 

in class 2H . The other limits behave similarly.  
� 

Now we show the result of the simulation of the Turing machine by two-
dimensional real recursive function 2 2R R→ . We represent a two-side infinite 
sequence:  by the pair of infinite sequences: 2 1 0 1 2.a a a a a− −… …
( )0 1 2 1 20. ,0.a a a a a a− −… … .  
 
Lemma 3.6. Let Φ  be a shifting mapping of GS with ( ) 1 0 1.DOD a a a a−= . Then 
there exists a function 2:GS

2f R R→ , such that: 
( ) ( ) ( ), ,GS a a b ba b f x y x y= ≡ =Φ . 

 
Proof. According to the definition of GS, ( ),b bx y  is obtained from ( ),a ax y  by 

replacing ,  and  by the elements of 1a− 0a 1a ( )|DODG a , where | 1.DODa a a− 0 1a=  

and then by shifting with respect to F . Multiplying  by ,  and taking 

, we obtain 

ay n ay n

ay n⎢⎣ ⎥⎦ 1a− . Analogously we have 
2

0 12 0.ax n
a a

n

⎢ ⎥⎣ ⎦ = , hence 

2

| 1 0 1 2. a
DOD a

x n
a a a a y n

n−

⎢ ⎥⎣ ⎦= = +⎢ ⎥⎣ ⎦ . Then the last string is transformed by G. For 
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( )| 1DODF a = +  the elements  should be replaced by , whereas in a 

string  symbol 
0 1a a ' '

1 0a a

ay 1a−  remains the same.  
Hence we have: ( ) ( )' '

0 1 2 1 2 3 1 0 2 1 2 30. ,0. 0. ,0.a a a a a a a a a a a a− − − − − −→… … … …  and 

after shift we obtain: ( ) ( )' '
0 2 3 1 1 2, 0. ,0.b bx y a a a a a a− −= … …

DODG a n a a−
⎢ ⎥ =⎣ ⎦ n

. Multiplying 

 by  and subtracting from ( ) '
| 1 1 ( ) 2

|DODG a n a a a−= ' '
1 1 0  we obtain 

, '
0a

( ) ( )2
| | '

00.
DOD DODG a n G a n n

a
n

⎢ ⎥− ⎣ ⎦ = . Thus we have:  

 
( ) ( )2 2 2

| |DOD DOD a a
b

G a n G a n n x n x n
x  

n n

⎢ ⎥− ⎢ ⎥−⎣ ⎦ ⎣= + ⎦ . 

Continuing similar considerations we have ( ) '
|DODG a n a a−

⎢ ⎥ =⎣ ⎦ 1 1  and 

( )| 1DODG a a−
⎢ ⎥ =⎣ ⎦ . From 

( ) ( )| |DOD DODG a n G a n

n

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦  we obtain . A desired 

string  is equal to:  

'
10.a

by

 
( ) ( )| |DOD DOD a

G a n G a n y  
n n

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ + . 

By parallel considerations as above for ( )| 1DODF a = −  we find: 

 
( ) ( ) ( )2 3 3

| | |

2 3

DOD DOD DOD a aa
b

G a G a n G a n n
3

x n x ny n
x

n n n n

⎢ ⎥ ⎢ ⎥− ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣= + + + ⎦  

and 
 b a ay y n y n= − ⎢ ⎥⎣ ⎦  

� 
The above result allows to formulate the following theorem. 

Theorem 3.7. For an arbitrary Turing machine TM: 0( , , , , )fQ q qΣ δ , there 

exists a recursive function 2:GS
2f R R→  belonging to 2H , that simulates this 

Turing machine. 
 
Proof. Defining ( ) ( ), ,GS a a b bf x y x y=  we use a composition of two operations 

x⎢ ⎥⎣ ⎦ ; we have ( )|DODG a⎢ ⎥⎣ ⎦  where 
2

| 2
a

DOD a

x n
a y n

n

⎢ ⎥⎣ ⎦= +⎢ ⎥⎣ ⎦ . Hence GSf  is in 2H . 

� 
It is an interesting phenomenon if we increase dimension of simulation from 

1 to 2, the class of the functions in  η -hierarchy is not changed. 
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Now we propose the next simulation of the Turing machine by a real 

recursive function 5 5R R→ . We represent a two-side infinite sequence: 
 as five elements (two infinite sequences and three digits) as 

follows: . The three last digits are 
respectively:  – the first digit before dot (symbol directly before that under 
the head),  – the first digit after dot (actually state machine),  – the second 
digit after dot (a symbol under the head), however, two infinite sequences are the 
right and left parts of the sequence respectively. 

2 1 0 1 2.a a a a a− −… …
)( 2 3 4 2 3 4 1 0 10. ,0. , , ,a a a a a a a a a− − − −… …

1−a

0a 1a

 
Lemma 3.8. Let Φ  be a shifting mapping of GS with ( ) 1 0 1.DOD a a a a−= . Then 
there exists a function 5:GS

5f R R→ , such that: 
 ( ) ( ) ( ), , , , , , , ,GS a a a a a b b b b ba b f x y p q s x y p q s= ≡ =Φ . 
 
Proof. Analogously to lemma 3.6, the function GSf  should replace 1a− ,  and 

 by the digits determined by 
0a

1a ( )|DODG a , where | 1.DODa a a− 0 1a= , and then the 
shift digits according to the value of F . In this case  can be computed in 

an easier way: 

|DODa

| 2
a a

DOD a
q sa p
n n

= + + . Let us consider at the beginning the case 

( )| 1DODF a = + . In this case a transformation G changes only the old value  

into  and the old value 
aq

'
1a as  into . Since in this case transformation G does 

not influence digit 

'
0a

1a−  (changes neither value nor position) a variable ap  does 
not change.  
 ( ) ( )' '

2 3 4 2 3 4 1 0 1 2 3 4 2 3 4 1 1 00. ,0. , , , 0. ,0. , , ,a a a a a a a a a a a a a a a a a a− − − − − − − −→… … … … . 

By shift to the right we obtain the following digits: 
 ( ) ( )' ' ' '

2 3 4 2 3 4 1 1 0 3 4 5 1 2 3 1 0 20. ,0. , , , 0. ,0. , , ,a a a a a a a a a a a a a a a a a a− − − − − − −→… … … … . 

Hence 
 ( ) ( )' '

3 4 5 1 2 3 1 0 2, , , , 0. ,0. , , ,b b b b bx y p q s a a a a a a a a a− − −= … … . 

We have: 
 2 3 4 5 2 3 4 5. 0.b a ax x n x n  a a a a a a a a= − = − =⎢ ⎥⎣ ⎦ … … , 

 1 2 3 1 2 30. 0.0 0.a a
b

p yy a a a a a
n n − − − − − −= + = + =… …a , 

 ( ) ( ) ' '
| | 1 1 0b DOD DOD 1 1p G a n G a n a a a a− −

⎢ ⎥ ⎢ ⎥= − = −⎣ ⎦ ⎣ ⎦ = , 
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 ( ) ( )2 ' '
| | 1 1 0 1 10b DOD DODq G a n G a n n a a a a a a− −

⎢ ⎥ ' '
0= − = −⎣ ⎦ = , 

 2b as x n  a= =⎢ ⎥⎣ ⎦ . 

In the case ( )| 1DODF a = −  the transformation G changes the old value ap  for 

the , the old value  for the  and the old value '
0a aq 1a− as  for the , and we 

have: 

'
1a

We obtain the mapping: 
 ( ) ( )' '

2 3 4 2 3 4 1 0 1 2 3 4 2 3 4 0 1 10. ,0. , , , 0. ,0. , , ,a a a a a a a a a a a a a a a a a a− − − − − − − −→… … … … . 

Shifting in the left hand side direction we obtain the following motion digits: 
 ( ) ( )' ' ' '

2 3 4 2 3 4 0 1 1 1 2 3 3 4 5 2 0 10. ,0. , , , 0. ,0. , , ,a a a a a a a a a a a a a a a a a a− − − − − − − − −→… … … … . 

Hence 
 ( ) ( )' '

1 2 3 3 4 5 2 0 1, , , , 0. ,0. , , ,b b b b bx y p q s a a a a a a a a a− − − − −= … … . 

So we have: 

 
( ) ( )2

| | ' '
1 2 3 4 1 2 30. 0.0 0.

DOD DOD a
b

G a n G a n n xx  a a a
n n

⎢ ⎥− ⎣ ⎦= + = + =… …a a a a  

for ( ) ( )2 ' '
| | 0 1 1 0 0DOD DODG a n G a n n a a a a a a− −

⎢ ⎥ ' '
1 1− = − =⎣ ⎦ , 

 , 2 3 4 2 3 4 5. 0.b a ay y n y n  a a a a a a a− − − − − − −= − = − =⎢ ⎥⎣ ⎦ … …
 2b ap y n   a−= =⎢ ⎥⎣ ⎦ , 

 ( ) '
| 0b DODq G a  a⎢ ⎥= =⎣ ⎦ , 

 1b as p a−= = . 
� 

The above result allows to formulate the following theorem. 
 
Theorem 3.9. For an arbitrary Turing machine TM: 0( , , , , )fQ q qΣ δ  there exists 

the real recursive function 5:GS
5f R R→  belonging to 1H , that simulates this 

Turing machine. 
 

Proof. Let us observe that | 2
a a

DOD a
q sa p
n n

= + +  is in 0H .  

Defining ( ) ( ), , , , , , , ,GS a a a a a b b b b bf x y p q s x y p q s=  we use the operation x⎢ ⎥⎣ ⎦ , 
therefore GSf  is in 1H . 

� 
To define the function 5:GS

5f R R→  three different variables ap ,  and aq as  
(each of these symbols is one of the digits occurring in ) have been used. |DODa
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This allows to define  without a function |DODa x⎢ ⎥⎣ ⎦ . This fact makes it possible 

to decrease the class of functions GSf  in η -hierarchy. 
 

4. Conclusions 
This paper deals with complete description of shifting transformation GS 

proposed by C. Moore in [5]. Three simulation algorithms of the Turing 
machines by using real recursive functions, with the extended shifting mappings 
to the set of real functions are given. We determine the position in the  
η-hierarchy for these simulations. However, one can simulate Turing machines 
without using the shifting mapping. Such a method has been used in work [9]. 
One and two-dimensional simulations are from 2H , while the simulation with 5 
arguments is 1H . We treat these results as the first step in the research of 
possible simulations of different types of Turing machines by real recursive 
functions. The next step will be devoted to accelerating Turing machines and  
O – machines.  
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