
Annales UMCS Informatica AI 2 (2004) 125-133
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

OpenMP parser for Ada

Rafał Henryk Kartaszyński*, Przemysław Stpiczyński**

Department of Computer Science, Maria Curie-Skłodowska University,
pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract

This paper describes OpenMP parser for Ada, which is meant to make parallel programming in
Ada simpler. We present different approaches to parallel programming and advantages of OpenMP
solution. Next, implemented directives and clauses are described, and appropriated examples
given. General look at parsing algorithm is presented in another part of this article. Finally, we
present the source code of sequential program written in OpenMP Ada transformed into the
parallel program by presented parser.

1. Introduction

Each parallel programming language must satisfy three basics aspects of
parallel computing, namely it should specify parallel execution, communication
between multiple threads, and synchronization between them. In most cases, it is
achieved by extension to existing sequential languages. Different programming
languages have presented different look at this subject. Some of them provide
constructs expressing parallel communication, execution, etc. Others, like PVM,
provide library routines.

OpenMP standard is based on directives, which may be embedded within
sequential programs written in C, C++ or Fortran. Main advantage of this
solution is that the same program may be executed on single – and
multiprocessor platforms. In the first case OpenMP directives will be treated as
comments and ignored by the language translator. In the second case when we
have a compiler capable of understanding OpenMP directives, sequential
program will be transformed into parallel program. Another benefit of this
approach is easiness of creating parallel programs by simple adding parallel
directives. For example, syntax of OpenMP directive for C/C++ is:

#pragma omp directive-name [clause] ...

* E-mail address: rkartaszynski@liza.umcs.lublin.pl
** E-mail address: przem@hektor.umcs.lublin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 126

If the compiler used to compile code with, for example parallel directive,
supports OpenMP, code block after this directive will be “cloned” on n
processes and executed n times in parallel. n is a number of available processors.

Why Ada? Because it provides powerful means for developing concurrent
programs (tasks) or programs for parallel shared memory computers. However,
those features are complicated in use, unlike to easy extensions to C or Fortran.
It was the main reason why Ada did not become a popular parallel programming
language [1].

The aim of this project is to write parser, which would convert the sequential
program, written in Ada with embedded OpenMP directives, into a parallel
program. This will greatly simplify parallel programming in this language. The
idea of writing this program was put forward in [2]. It should be pointed out that
there are some other extensions to Ada which also simplify parallel
programming [1,3]. However, our approach is compliant with OpenMP – de
facto standard for shared memory parallel programming, thus many shared
memory parallel algorithms can be easily ported to Ada. Another benefit of our
approach is that OpenMP-Ada programs are still correct “pure Ada 95”
programs. One can compile such a program using the GNU Ada 95 compiler,
which will produce a code with no syntactical errors. Finally, OpenMP Ada
allows to simplify distributed memory programming using remote subprograms
calls instead of complicated message passing [2].

2. OpenMP directives
According to the idea presented in [2], OpenMP directive syntax for Ada is as

follows:
pragma omp; -- directive-name [clause] ...
block of code
pragma omp; -- end
We have implemented the following directives:
- parallel
- parallel for

which are used in most cases when programming with OpenMP.

2.1. parallel directive
Opening and closing directive specifies a block of code to be executed by

multiple threads. Precisely its copy will be executed by a group of threads. In the
following example we will illustrate this behavior:

Example 1.
...
pragma omp; -- parallel

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

 OpenMP parser for Ada 127

put_line(“Hello world”);
pragma omp; -- end
...

By default OpenMP program is run sequentially as a single thread. When
beginning pragma is encountered, new slave threads are created and then called
to print “Hello world” on standard output. The number of threads called
depends on the number of processors available. After each thread finished
executing, there is an implicit barrier. When all called threads have ended, the
rest of main program is executed.

put_line(... put_line(... put_line(...

Slave threads

Master thread

The following clauses are available for the parallel directive:
- private(list) - provides a list of variables, specifies that each thread

has its private copy. They ought to be active in the thread block.
- shared(list) - list of variables to be shared between all threads
- default(private | shared | none) - switches data-sharing

attributes of variables, shared is default. It may be changed to private
or none. When it is none each variable within the parallel region must be
named in shared or private clauses.

- reduction(operation : list) - provides a reduction operator
and a list of variables

2.2. parallel for directive

In this case for loop is enclosed in directives. The iterations are divided
among available threads, and each of them makes only part of all iterations. In
the example below, if we have, for example, five processes, each of them will
write “Hello world” twice, which will give total amount of ten lines written.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 128

Example 2.
...
pragma omp; -- parallel for
for i in 1..10 loop
put_line(“Hello world”);
end loop;
pragma omp; -- end
...

The same clauses as for parallel directive are supported. Very important
is reduction clause, used to identify variables used in reduction operations
within the parallel region.

3. Implementation
Parser was written in C. We launch it with one or more arguments. The first is

the path to .adb file containing program in Ada. The other are the options for
gnatmake. After start, parser is trying to compile file with gnatmake. If no
error occurred, main OpenMP parser is launched. Results are written to
temporary file. When all necessary operations have been completed, adding
suffix “.tmp” changes the source file name. Next gnatmake is called second
time to compile new file.

Now we will concentrate on algorithm.
Program reads source file. All declarations of variables and their types, as

well as positions in file, of beginning and ending OpenMP directives, are stored
in arrays. Variables types will be necessary when writing declaration of local
variables of task type. OpenMP parallel regions are not stored directly in
memory, but are read from the source if needed. Remembered positions in file
are used when the resulting file is being prepared.

Parallel program capacity is obtained by the use of task types. Task type
executing code of directive is declared within the declaration section of
structured block where this directive is placed. Name of type is defined by the
program constant. When multiple directives are embedded within the same
structured block, names of thread types are modified to guarantee their
uniqueness. The first type name is not changed, but to next, appropriate numbers
are added: “1” for second, “2” for third etc.. In a general type declaration may
be written as follows:

task type worker is
 entry Init(no : in natural);
 entry GetVals(...);
 entry RetVals(...);
end worker;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

 OpenMP parser for Ada 129

Entry Init is used to initialize task variable and to give every instance of
that type unique number. Entry GetVals and RetVals may not have
parameters, in most trivial cases. We face such a situation, when there is no need
of initializing local variables, or retrieving the results from threads.
Simultaneously, need of calling RetVals, guarantees existence of implicit
barrier. GetVals parameters are variables from private and reduction
clauses, if parallel for directive is used, also bound, in which loop
iterations are to be executed, must be provided. RetVals entry parameters are
variables from reduction clause, returning parallel region execution results in
the structured block, from which thread was called. Along with task types, arrays
of pointers to those types are declared.

Entries GetVals and RetVals are to assign entries parameters to local
variables. If the parameter list of these entries is empty they are to perform
null operation.

For each parallel region, parser identifies used directive and its clauses. On
that basis, array of variables, which have to be declared, is created. When
writing the result to file those variables are inserted into appropriate places.

Function serving directives also create text of thread call. It will replace code
between OpenMP directives. Creating and calling threads is obtained by the
following code:

for Indexworker in 1..10 loop
 ArrWorker(Indexworker) := new worker;
end loop;
for Indexworker in 1..10 loop

end loop;

ArrWorker(Indexworker).Init(Indexworker);

Rest of call depends on directive used. When it is parallel we have:
for Indexworker in 1..10 loop
 ArrWorker(Indexworker).GetVals(...);
end loop;
for Indexworker in 1..10 loop
 ArrWorker(Indexworker).RetVals(...);
end loop;

Names of RetVals parameters are variable identifiers from the
reduction clause with the added „Loc” suffix.

When parallel for directive is considered, there is need of distribution
of all for loop iterations between available processes. Following the code one
computes bound for each thread:
 LowIndex := (n – 1 + 1) / 10;
 HighIndex := (n – 1 + 1) mod 10;
 NumOfProcAlSt := 1;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 130

Number 10 stands for the number of processes that we wish to call. (n – 1
+ 1) is the number of all iterations of paralleled loop, which is ending index
(here n) minus starting index (here 1) plus 1. Next appropriate parameters are
sent to threads:

 for Indexworker in 1..HighIndex loop
 ArrWorker(Indexworker).GetVals(NumOfProcAlSt,
NumOfProcAlSt + LowIndex, ...);
 NumOfProcAlSt := NumOfProcAlSt + 1 + LowIndex;
 end loop;
 for Indexworker in (HighIndex + 1)..10 loop
 ArrWorker(Indexworker).GetVals(NumOfProcAlSt,
NumOfProcAlSt + LowIndex - 1, ...);
 NumOfProcAlSt := NumOfProcAlSt + LowIndex;
 end loop;

First two of GetVals parameters are bounds in which thread loop iterations
are to be performed.

Source file code parts, as well as transformed code are written into the result
file. This process is safe and produces correct results when one, or more
OpenMP directives, are considered.

Error handling ensures immunity to most file format and system errors.

4. Results
We present below an example showing how a sequential program, with

OpenMP directives, is parsed into parallel program.
We want to calculate the Euler constant described by the formula:

1

1 ln
n

n
k

g n
k=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ .

It is not difficult to write the following program in OpenMP Ada to handle
needed operations:

with Text_io; use Text_io;
with ada.integer_text_io; use ada.integer_text_io;
with ada.float_text_io; use ada.float_text_io;
with ada.numerics.aux; use ada.numerics.aux;

procedure gamma is
 n : integer;
 i : integer;
 sum : float;

begin

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

 OpenMP parser for Ada 131

 sum := 0.0;
 put_line("n: ");
 get(n);
 pragma omp; -- parallel for reduction(+ : sum)
 for i in 1..n loop
 sum := sum + 1.0/float(i);
 end loop;
 pragma omp; -- end

 sum := sum - float(log(double(n)));
 put("gamma = ");

end gamma;

put(sum);

As we can see for loop is between parallel for directive. When we

use OpenMP parser, code of our program will be modified as follows:

with Text_io;use Text_io;
with ada.integer_text_io; use ada.integer_text_io;
with ada.float_text_io; use ada.float_text_io;
with ada.numerics.aux; use ada.numerics.aux;

procedure gamma is
 n : integer;
 i : integer;
 sum : float;

 task type worker is
 entry Init(no : in natural);
 entry GetVals(StartPointLoc : in integer;

StopPointLoc : in integer; sumLoc : in float);
 entry RetVals(sumLoc : out float);
 end worker;

 task body worker is
 sum : float;
 i : integer;
 number : integer;
 StartPoint : integer;
 StopPoint : integer;
 begin
 accept Init(no : in natural) do
 number := no;
 end Init;
 accept GetVals(StartPointLoc : in integer;

StopPointLoc : in integer; sumLoc : in float) do
 StartPoint := StartPointLoc ;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 132

 StopPoint := StopPointLoc;
 sum := sumLoc;
 end GetVals;

 for i in StartPoint..StopPoint loop
 sum := sum + 1.0/float(i);
 end loop;

 accept RetVals(sumLoc : out float) do
 sumLoc := sum;
 end RetVals;
 end worker;

 type TworkerPtr is access worker;
 Arrworker : array(1..10) of TworkerPtr;
 Indexworker : integer := 1;
 sumLoc : float;
 LowIndex : integer;
 HighIndex : integer;
 NumOfProcAlSt : integer;

begin
 sum := 0.0;
 put_line("n: ");
 get(n);

 pragma omp; -- parallel for reduction(+ : sum)
 for Indexworker in 1..10 loop
 ArrWorker(Indexworker) := new worker;
 end loop;
 for Indexworker in 1..10 loop
 ArrWorker(Indexworker).Init(Indexworker);
 end loop;

 LowIndex := (n – 1 + 1) / 10;
 HighIndex := (n – 1 + 1) mod 10;
 NumOfProcAlSt := 1;

 for Indexworker in 1..HighIndex loop
 ArrWorker(Indexworker).GetVals(NumOfProcAlSt,

NumOfProcAlSt + LowIndex, sum);
 NumOfProcAlSt := NumOfProcAlSt + 1 + LowIndex;
 end loop;
 for Indexworker in (HighIndex + 1)..10 loop

ArrWorker(Indexworker).GetVals(NumOfProcAlSt,
NumOfProcAlSt + LowIndex - 1, sum);

 NumOfProcAlSt := NumOfProcAlSt + LowIndex;
 end loop;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

 OpenMP parser for Ada 133

 for Indexworker in 1..10 loop
 ArrWorker(Indexworker).RetVals(sumLoc);
 sum := sum + sumLoc;
 end loop;
 pragma omp; -- end

 sum := sum - float(log(double(n)));
 put("gamma = ");

end gamma;

put(sum);

Execution of both programs will produce the same results. In the second case,

ten parallel threads make loop iterations.
As we can see writing this program, solution to a trivial problem, in “pure”

Ada would be a time consuming process. When we use OpenMP parser we save
a lot of time, and what is important, our program can be executed sequentially or
in parallel. In addition, we do not need to rewrite our old programs to execute
them in parallel, we simply put OpenMP pragmas in appropriate places in the
source code and OpenMP parser makes all necessary transformations.

We obtained a programming tool, which simplifies parallel programming
with Ada. It should be pointed out that our tool works fast and no significant
overheads of the transformation of OpenMP Ada programs into pure Ada take
place.

5. Future work

We are planning to implement additional OpenMP directives and routines.
We are also planning to add support for distributed shared memory. Using Ada
for standardizing approach to parallel and distributed programming is very
interesting [2] and will be part of our future research.

References

[1] Paprzycki M., Zalewski J., Parallel computing in Ada: An overview and critique, Ada Letters,
17(1997) 62.

[2] Stpiczyński, P., Ada as a language for programming clusters of SMPs, Annales UMCS
Informatica, 1 (2003) 73.

[3] Paprzycki M., Zalewski J., Ada in distributed systems: An overview, Ada Letters, 17 (1997)
55.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 17:40:14

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

