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Abstract 
There is given a description of the solution set to p-regular equality – constrained optimization 

problems. Based on the apparatus of factor-operators P-order conditions for optimality are 
presented. The method for solving irregular optimization problems is proposed. 
 

1. Introduction 
In this paper we are concerned with a new class of methods for solving 

irregular optimization problems with equality constraints.  
To analyse these methods the higher order optimality conditions are applied. 

We construct the new form of p-factor penalty function method, which permits 
us to reduce the constrained optimization problem to the series of unconstrained 
problems. These conditions are obtained in the frameworks of recent 
development of the p-regularity theory. Some of these results have been 
presented at the French-German-Polish Conference on Optimization, Cottbus, 
September 9-13, 2002. 

Let us consider the problem of solving nonlinear optimization problem in the 
following form 
 ( )minimize xφ  (1) 
 ( )subject  to  0F x =   
where 1: nR Rφ →  is a sufficiently smooth function, : n mF R R→  is 

a sufficiently smooth mapping, and the Jacobian matrix ( )*'F x  is singular in the 

solution x* to the problem (1). 
The problem (1) is called regular in the solution x* if the Jacobian matrix has 

full rank, i.e. 
 ( )*'rank F x m= . (2) 
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In the other case, when the Jacobian matrix ( )*'F x  is singular, the problem 

(1) is called irregular (nonregular) at the point x* and x* is called singular 
(degenerate) solution to the problem. 

The proof came as a result from the convergence properties of the methods 
for solving optimization problems, the regularity condition (2) is assumed to be 
held. When the regularity condition is violated many methods lose their high 
convergence rate or become inapplicable for finding singular solutions. 

Moreover, in the nonregular case, the Euler-Lagrange optimality conditions 
 ( ) ( )* * *

0 ' '
T

x F xλ ϕ λ 0+ =  (3) 

are trivially satisfied with any 0 0λ =  such that ( )* *'
T

F x λ 0=  and do not 

give any constructive information about the solution to the optimization problem 
(1). In this case condition (3) describes the kernel of the operator ( )*'F x  only. 

Hence, equality (3) could not be applied to find nonregular solutions to the 
optimization problem (1). 

The constructions of p-regularity introduced in [1,2] give new possibilities for 
description and investigation of nonregular solutions to the degenerated 
nonlinear optimization problems. For the p-regular problems, new necessary and 
sufficient optimality conditions were derived in [1-3]. 

In this paper, we present new methods for solving nonregular nonlinear 
optimization problems. The methods are constructed on the basis of the 
optimality conditions for the p-regular optimization problems. 

We denote by ( ),n mL R R  the space of all linear operators from Rn to Rm. 

Further, { }0nKerL x R Lx= ∈ | =  denotes the null space of a given operator 

 and : nL R R→ m { } for some m nImL y R y Lx x R= ∈ | = ∈  is an image space.  

Also,  denotes the adjoint (or transpose) of L, :T mL R R→ n

{ }, 0   nM h R h x x M⊥ = ∈ | = ∀ ∈  denotes annihilator of the set M and 

1 1 2 3, . n n..x y x y x y x y= + + + . 
Let p be a natural number and let : ...n n n

p

mB R R R R× × × →���	��
  be a symmetric 

p-multilinear mapping. The p-form associated with B is the map 
[ ]. :p n mB R R→  defined by 

 [ ] ( , ,...,p

p

)B x B x x x= ��	�
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for x X∈ . Alternatively, we can simply view [ ]. pB  as a homogeneous 
polynomial map : n mB R R→  of degree p, i.e., ( ) ( )pB x Bα α= x

m

. The space of 
homogeneous polynomial : nB R R→  of degree p will be denoted by 

( ),p n mQ R R . 

If the mapping : n mF R R→  is differentiable, then its derivative at a point 
x X∈  will be denoted as ( )' : n mF x R R→ . If ( ) : n mF x R R→  belongs to the 

class Cp, then we take ( ) ( )pF x  to be the p-th order derivative of F at the point x 
(a symmetric multilinear map of p copies of nR  to mR  and the associated  
p-form, also called the p-th - order, is 
 ( ) ( )[ ] ( ) ( )[ ],...,pp p

p

F x h F x h h= ��	�
 .  

Furthermore, we will use the following key notation, 
 ( ) ( ) ( ) ( )[ ]{ }0pp pp nKer F x h R F x h= ∈ | =   

for the p-kernel of the mapping ( ) ( )pF x . 
 

2. Elements of P-regularity theory. P-factor operators 
It is well known, that Lyusternik theorem [4] provides a useful tool for 

constructive description of the tangent cone to the set 
( ) ( ) ( ){ }* :n *M x x R F x F x= ∈ =  for the regular mapping F. Let us recall some 

definitions and the Lyusternik theorem. 
We say the mapping F is regular at the point x* if 

 ( )*Im ' mF x R= . (4) 

The mapping F is called nonregular (degenerate, irregular) if regularity 
condition (4) is violated. 

 
Definition 1. Let M be a subset of the Euclidean space nR . A vector  is 
said to be tangent to the set M at the point x

nh R∈
* if there exist an ε > 0 and 

a mapping ( )t r t→  of the interval [0, ε] into Rn such, that 
 ( ) [ ]*     0,x th r t M t ε+ + ∈ ∀ ∈ , 

 
( )

0
lim 0
t

r t
t→

= . 
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A set of vectors tangent to the set ( )*M x  at the point x* is a closed cone. This 

cone is usually called the tangent cone to the set ( )*M x  at the point x* and is 

denoted by ( )*
1T M x . 

 
Theorem 1. (Lyusternik theorem) Let nR  and mR  be Euclidean spaces, U be 
a neighborhood of the point * nx R∈ , and : mF U R→ , ( )1 , mF C U R∈ . 

Furthermore let’s assume that F is regular at x*. 
Then the tangent cone to the set ( ) ( ) ( ){ }* *M x x U F x F x= ∈ | =  at the point 

x* coincides with the kernel of the operator ( )*'F x : 

 ( ) ( )*
1 'T M x KerF x= * . (5) 

We consider the case when regularity condition (4) does not hold, but the 
mapping F is p-regular. For this case a generalization of the Lyusternik theorem 
has been derived in [1-4]. First of all, let us remind the definition of  
p-regularity and construction of p-factor -operator. 

We construct here p-factor -operator under an assumption that the space mR  
can be decomposed into direct sum 
 1 ...m

pR Y Y= ⊕ ⊕ , (6) 

where ( )*
1 Im 'Y F x= , ( ) ( )[ ]* . ii

i ZiY lin Im P F x= , 2, 1i p= − , , p pY Z=

( )1 1...i iZ Y Y ⊥
−= ⊕ ⊕ , 2, 1i p= − . By ZiP  we denote orthoprojector onto Zi, 

along  with respect to ( 1 ... iY Y −⊕ ⊕ )1
mR . 

We introduce the new mappings 
 ( ) : n

i ig x R Y→ ,  

 ( ) ( )    for  1,i Yig x P F x i p= =   
where : orthoprojection onto . YiP iY
 
Definition 2. Linear operator 
 ( ) ( ), ...n

p i ph L R Y Y∈ ⊕ ⊕Ψ nh R∈,     

 ( ) ( ) ( ) ( ) ( )[ ] 1' * " * *
1 2

1 1...
2! !

pp
p h g x g x h g x h

p p
−= + + +Ψ   

is called p-factor -operator. 
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Definition 3. We say the mapping F is p-regular at the point x* along an element 
, if p is the lowest integer number such that nh R∈

 ( )Im m
p h R=Ψ .  

 
Definition 4. We say the mapping F is p -regular at the point x*, if it is p-regular 
along any element h from the set. 

 .  ( ) ( ) ( ) { }*

1

\ 0
p

rr
P r

r

H x Ker g x
=

⎧
= ⎨
⎩ ⎭
∩ * ⎫

⎬

 
Definition 5. Function 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )[ ] 11
0 0

1

, , , ,
p

ii
p i

i

L x h h y h h x y h g x hλ λ φ −−

=

= +∑ i   

is called p-factor Lagrange’s function, where ( )i iy h Y⊂  1,i p= , . ( )0 h Rλ ∈
 

The following theorem [3,4] will be used in our analysis: 
 

Theorem 2. (Necessary conditions for optimality in singular case) 
Let U be a neighborhood of the point x* and , ( )2 ,C U Rφ ∈

( )1 ,p mF C U R+∈ . Suppose ( )*
ph H x∈ . If x* is a locmin (1), then there exist 

 and multipliers ( )0 h Rλ ∈ ( ) ( ) ( )( )* * *
1 ,..., py h y h y h= , such that they do not all 

vanish, and 

 ( ) ( )( ) ( ) ( ) ( ) ( )[ ]( )11' * * * * *
0 0

1
, , , '     0

p Tii
px i i

i
L x h h y h h x g x h yλ λ φ −−

=

= + =∑ .  

If, moreover, ( ) 1Im ...p ph Y Y= ⊕ ⊕Ψ , then ( )0 0hλ ≠ . 
 

3. Sufficient conditions for optimality in the singular case 
Define the mappings 

 ( ) ( ) ( ) [ ]( )1' 1
1 2, ... pp p

pi
i

f x h g x g x h g h −−= + + +    1,m=i .  

Based on the above constructions and theorem we introduce so-called  
p - factor -penalty function: 

 ( ) ( ) ( )
1

, , ,   1,2...,
m rp

p i
i

M x K x K f x h rφ
=

= + =∑    . (7) 0K >

For the sake of simplicity we consider the case p = 2. For p = 2, p-factor 
penalty function has the following form 
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 ( ) ( ) ( )( )'
2 1 2

1
,

m r

i
i

M x K K g x g x h
=

= +∑   

where ( ) ( )( ) ( ) ( )( )'
1 2 '

i i
g x g x h F x P F x h⊥+ = + , P⊥  is orthoprojection onto 

( )( )*'ImF x
⊥

 and ( ) ( )* 2 * ' "er F x Ker P F x⊥∈ ∩h K , 1h = . 

In this case 2-factor Lagrange`s function will be as follows 
 ( ) ( ) ( ) ( )2 , ,1, , 'L x h y x y F x P F x hφ ⊥= + + . (8) 

From Theorem 2 it follows that at the solution point x* must be fulfilled 

 ( ) ( ) ( ) ( )( )' * * * * * *
2 , ,1, ' ' " 0

T

xL x h y x F x P F x h yφ ⊥= + + = . (9) 

It means that for the problem 
 ( )min xφ  (10) 
 subject to   ( ) ( )'F x P F x h⊥+ 0=

)

 (11) 
condition (9) under some additional assumption will be the necessary condition 
for optimality at the point x*. It is obvious that the 2-factor penalty function 

(2 ,M x K  will be the ordinary penalty function for the problem (10). 
 
Theorem 3. (Sufficient conditions for optimality in the singular case) 

Let U be a neighborhood of the point x*, ( )2 ,C U Rφ ∈ , ( )3 , mF C U R∈  and 

F 2-regular at the point x* along element ( )*
2h H x∈  

If there exist α>0 and multipliers ( )*y h  such that: 

 ( )' * *
2 , ,1, 0xL x h y =  (12) 

 ( )[ ]2 2" * *
2 , ,1,xxL x h y z zα≥   

for all ( ) ( )( )*' "z Ker F x P F x h⊥∈ + * , then point x*-is a strict local minimizer to 

the problem (10). 
From the fact that constraint (11) is regular in classical sense, the proof followed 
from the same result for the minimization problems with regular constraints [5]. 
 

4. Convergence and rate of convergence for the 2-factor  
penalty function method 

Consider 2- factor penalty function for problem (10) 

 ( ) ( ) ( )2
2

1
,

m r

i
i

,M x K x K f x hφ
=

= + ∑ .  
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Let ( )2x K  be a local solution to the following minimization problem 

 ( )2min ,M x K ,   ( )*x U xε∈  (14) 

where ( )*U xε  - ε-neighborhood of the point x* and ε - sufficient small. 

Denoted by 
 ( ) ( ) ( )( )*

2 2 2 ,K x M x K Kφ∆ = −   

the accuracy of the solution ( )2x K . 
From the above given theorems we can postulate that the following theorem 

will be held. 
 
Theorem 4. (Convergence and rate of convergence for the 2-factor penalty 
function method in the singular case) 

Let x*^ be a locmin to (1) and the following conditions are fulfilled: 
a) ( )2 nC Rφ ∈ , ( )3 nF C R∈ , 

b) F- 2-regular at the point x* along the element ( )*
2h H x∈ , 

c) necessary and sufficient conditions for optimality are fulfilled at the point 
x*

 ( )' * *
2 , ,1, 0xL x h y = ,  

 ( )[ ]2 2" * *
2 , ,1,xxL x h y z zα≥   

 ( ) ( )( )*' "z Ker F x P F x h⊥∀ ∈ + * .  

Then for sufficiently large  there exists solution (14) 0 0K >

 ( ) ( )
( )*

2 min ,
x U x

2x K loc M x K
ε∈

=  (15) 

for all  and 0K K≥

 ( )2 0K∆ = ,   1r =  (16) 

 ( )
1

1

2
10

r
K C

K
−⎛ ⎞≤ ∆ ≤ ⎜ ⎟

⎝ ⎠
   2,3,...,r =  (17) 

where C > 0 is constant. 
 
Proof. It is obvious that for the problem 
 ( )min xφ  

 subject to   ( )2 , 0if x h = ,   1,i = m  (18) 
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the point x* -is a strict local minimizer (Theorem 3). And the constraints 
( )2 , ,  1,if x h i m=  are regular at the point x* (since the matrix 

( ) ( )( )*' " *F x P F x h⊥+  is nonsingular). 

Then, obviously, the feasible set 
 ( ){ }2| , 0,    1,n

iD x R f x h i m= ∈ = =   

is 1-majorizable [6] in the ε-neighborhood ( )*U xε , i.e. 

 ( ) ( )2
0

1

,
m

i
i

,x D C f x hρ
=

≤ ∑ , (19) 

where ( ), inf
y D

x D x yρ
∈

= − 0 0C >,  – constant. 

We will prove, that there exists solution ( )2x K  to the problem (14) inside 

( ) ( ) ( )*
2:U x x K intU xε ∈ *

ε . At the solution x* we have 

 ( ) ( )*
2 2, ,M x K M z K<  (20) 

for all points ( ) ( ){ }* * *z SU x z U x z xε ε ε∈ = ∈ | − = , ε > 0 – small enough. 

Let ( ) ( ) ( ){ }* ,D x U x x Dε ρ∆ = ∈ | ≤ ∆  be a delta strip of feasible set, (Fig. 1). 

 
Fig. 1 

 
The whole sphere may be represented as ( )*

1SU x D Dε = ∪ 2 , where 

( ) ( ){ }*
1D D SU xε= ∆ ∩ , ( ) ( ){ }*

2 \D SU x Dε= ∆ . 

If we denote 

 ( )
2

2

1

0 min ,
m

ix D i

f x hα
∈

=

< = ∑    and   ( ) ( )( )
2

*max
x D

x xβ φ φ
∈

= −   

then for the points ( ) ( )* \x SU x Dε∈ ∆  and sufficiently large K we have 

Kα β>  and 
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 ( ) ( ) ( ) ( )* 2 * 2

1 1

,
m m

i
i i

,ix K f x h x f x hφ φ
= =

+ < +∑ ∑ ,  

 ( ) ( ) ( )( )2 * *
2

1
,    

m

i
i

K f x h K x x x Dα φ φ
=

≥ > − ∀ ∈∑ . 

It means that 
 ( ) ( )*

2 2, ,M x K M z K< ,   2z D∀ ∈ . (21) 

Now we will show that inequality (20) holds for the points 
 ( ) ( )*

1z D SU x Dε∈ = ∩∆ .  

From conditions (13) and (19) we have 

 ( ) ( ) ( ) ( )2

1
,

m

i
i

,x f x h z K z Dφ φ
=

+ ≥ +∑ ρ .  

Let us denote by yz - ortoprojection z onto D. 
We have 

 
( ) ( ) ( ) [ ]( )

( ) ( ) ( )
' ,

       2 ' , ,

z z z z

z z z z

x y y z y o z y

y y z y y C z

φ φ φ

φ φ φ

= + − + − ≥

≥ − − ≥ − − zy
 (22) 

where C > 0 is the independent constant, ( ), zz D z yρ = − , and based on the 

relation ( ) ( )*
zx yφ φ≤  we have 

 ( ) ( )*
z zy C z y x C z yφ φ− − ≥ − − z .  

From this 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 *

1 0

* *

10

1, , ,

1                                   = , , ,

m

i
i

m

i
i

x K f z h x C z D K z D
C

2 *x K C z D x K f x h
C

φ φ ρ ρ

φ ρ φ

=

=

+ ≥ − + =

⎛ ⎞
+ − ≥ +⎜ ⎟
⎝ ⎠

∑

∑
  

where 
0

0K C
C

− >  for . 0 0K K C C≥ = ∗

It means that 
 ( ) ( )*

2 2, ,M x K M z K≤ , for 1z D∈ . (23) 

Finally from (21) and (23) we have 
 ( ) ( )*

2 2, ,M x K M z K≤ ,   ( )*z SU xε∀ ∈  

for 
 . 0 0K K≥ >
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It means that there exists a solution ( ) ( )*
2x K intU xε∈  for , . 

Analogously we can prove the existence of 
0 0K K≥ > 1r =

( )2x K  for 2,3,...r = . 

Now the existence of the solutions ( ) ( )*
2x K U x∈  allowed us to apply the 

Theorem 6.2.7 from [6] (pp.131-132) in order to estimate the convergence rate 
of our method. Under the above conditions the following equations will be 
satisfied 
 ( )2 0,   1K r∆ = =   
and 

 ( )
1

1

2
1  2,3,...

r
K C r

K
−⎛ ⎞∆ ≤ =⎜ ⎟

⎝ ⎠
  

for all sufficiently large . 0K K≥
The theorem is proved. 

 
5. Example 

Consider an optimization problem of the following form 
 2

2min 3x x+  (24) 
with constraints 

 ( )
( )

( )

2 2 2
1 2 3

2 2 2
1 2 3 2 3

1 0
2

1 0
2

x x x
F x

x x x x x

⎧ − + =⎪⎪= ⎨
⎪ − + + =
⎪⎩

  

where x* = 0 is the solution to this problem, 3x R∈ . 
We would like to find out: is the F(x) regular at the point x* = 0, i.e. are the 
gradients of the constraints linearly independent at x* = 0? 

Here 

 ( ) 1 2 3

1 2 3 2 3

'
x x x

F x
x x x x x

−⎡ ⎤
= ⎢ ⎥− + +⎣ ⎦

.  

At the point x* = 0 we obtain 

   ( )
0 0 0

'
0 0 0

F x
⎡ ⎤

= ⎢
⎣ ⎦

⎥

In this case we see that the gradients of the constraints are linearly dependent 
and the mapping F(x) is not regular at the point x* = 0. 

Furthermore, we could not say anything about the convergence of classical 
penalty function and we could not guarantee the existence of x(K) for 
sufficiently large K > 0. 

Now we modify our problem (24) in accordance with our theory 
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 2
2min 3x x+  (25) 

 subject to   ( ) ( )'F x P F x h⊥ 0+ = ,  

where  - orthoprojection on to P⊥ ( )( )' 0ImF
⊥

 is equal to identity matrix and 

( )2 " 0h Ker P F⊥∈ , 0h ≠ . 
In our case we have 

 ( ) ( )2

1 1
' 0 " 0 1 1

0 0
KerF Ker P F Lin⊥

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟∩ = −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

,  

and 

 ( )

1 0 0
0 1 0
0 0 1

" 0
1 0 0
0 1 1
0 1 1

F

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥−⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟=
⎜ ⎟⎡ ⎤
⎜ ⎟⎢ ⎥−⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

,   ( ) [ ]' 0 0F = .  

The Lagrange’s function for the problem (25) has the following form 
 ( ) ( ) ( ) ( ), ,L x y x y F x P F x hφ ⊥= + + ' .  

Based on Theorem 2 we can derive Lagrange’s multipliers. Since 

 ( ) ( )
( )

( )

2 2 2
1 2 3 1 2

2 2 2
1 2 3 2 3 1 2 3

1
2'

1
2

x x x x x
F x P F x h

x x x x x x x x

⊥

⎡ ⎤− + + −⎢ ⎥
+ = ⎢ ⎥

⎢ ⎥− + + + − +⎢ ⎥⎣ ⎦

  

for , then ( )1,1,0 Th =

 
( ) ( )

( )

2 2 2 2
2 2 3 1 1 2 3 1

2 2 2
2 1 2 3 2 3 1 2 3

1, ,1,
2

1                    
2

L x h y x x y x x x x x

y x x x x x x x x

⎛ ⎞
2= + + − + + − +⎜ ⎟

⎝
⎛ ⎞+ − + + + − +⎜ ⎟
⎝ ⎠

⎠   

and 

 ( )' * * *
2 1 2

0 1 1
0, ,1, 0 1 1 0

1 0 1
L h y y y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⋅ − + ⋅ − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.  

We have obtained *
1 1y =  and . *

2 1y = −
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Taking into account the results of Theorem 3 we can verify positive 
definiteness of Hesse’s matrix of the 2-factor Lagrange’s function on the kernel 

( ) ( )( )' 0 " 0Ker F F h+ : 

 ( )* 2
2 2, ,1,L x h y x x x= − 2 3  

  ( )" *
2

0 0 0
0, ,1, 0 2 1

0 1 0
L h y

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

   ( ) ( )( )
1

' 0 " 0 1
0

Ker F F h lin
⎛ ⎞
⎜ ⎟+ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

and obviously 
 ( )" *

2 0, ,1, , 2 0L h y z z = > .  

It means that * 0x =  is the local minimizer to the problem (25). Now we can 
construct the 2-factor penalty function for the problem (24) 
 ( ) ( ) ( ) ( )2 , ' ,    1,2,...rM x K x K F x P F x h rφ ⊥= + + =& &   
Consider the case r = 1. 

 
( )

( ) ( )

2
2 2 3

2 2
2 2 2 2 2 2
1 2 3 1 2 1 2 3 2 3 1 2 3

,

1 1
2 2

M x K x x

K x x x x x x x x x x x x x

= + +

+ − + + − + − + + + − +
  

From the equivalence of the norms we can consider the following form of 
( )2 ,M x K : 

 
( ) ( )

( )

2 2 2 2
2 2 3 1 2 3 1

2 2 2
1 2 3 2 3 1 2 3

1,
2

1                .
2

2M x K x x K x x x x x

x x x x x x x x

⎛
= + + − + + − +⎜

⎝
⎞

− + + + − + ⎟
⎠

  

Also we know that the mapping ( ) ( )'F x P F x⊥+ h  is 1-regular at the point 
x* = 0, so for solving problem (25) we can apply classical theorem about the 
convergence of the classical penalty function (Theorem 4). 
Taking into account this theorem we obtain that: 
There exists such  that for  will be fulfilled: 0 0K > 0K K≥

 ( )2 ,    2CK
K

⎛ ⎞∆ ≤ =⎜ ⎟
⎝ ⎠

r ,  

where C > 0 arbitrary independent constant. 
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Finally we can point out that from positive definiteness of Hessian matrix 
( )"

2 0, ,1,L h y*  for all ( )" 0z KerF h∈ , 0z ≠ , the existence of ( ) ( )*
2x K U xε∈  

followed. 
 

6. Conclusions 
In this paper we have derived necessary and sufficient conditions for 

optimality to extremum problems in the presence of nonregular equality 
constraints. Our results are based on the p-regularity theory and apparatus of 
factor operators for constructive description of the structure of solution set in the 
singular case. 

This allows us to apply these results to create new method for solving  
p-regular nonlinear optimization problems – p-factor penalty function method, to 
prove the convergence, and to estimate convergence rate of proposed method. 
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