
 

Annales UMCS Informatica AI 3 (2005) 27-34 
Annales UMCS 

Informatica 
Lublin-Polonia  

Sectio AI 
http://www.annales.umcs.lublin.pl/ 

 
Using Markov chains for modelling networks 

 
Beata Bylina*, Jarosław Bylina 

 
Department of Computer Science, Institute of Mathematics, Marie Curie-Skłodowska University, 

pl. M.Curie-Skłodowskiej 1, 20-031, Lublin, Poland 
 

Abstract 
The paper contains the review and the discussion on modelling communication networks with 

the use of queuing models and Markov chains. It shows how to take into account various 
characteristics of real systems – like some control mechanisms and the traffic self-similarity. There 
are presented two mechanisms modelled with Markov chains: the RED algorithm in TCP/IP and a 
self-similar traffic shaping. 
 

1. Introduction 
Communication networks are getting more and more complicated nowadays. 

They allow storing, processing and transferring an enormous amount of data. 
Internet (as a global information medium) and its growth is an example of the 
network capabilities. Communication network activities depend on many 
factors, related to each other. They are being improved to fulfil more and more 
elevated and various users’ needs. 

To anticipate a network activity, one needs suitable tools that can evaluate the 
network and its work. Communication networks’ modelling is such a tool. It 
allows estimating behaviour of the network at the project stage, localizing 
congestion points and bottlenecks, finding packet loss probabilities and peak 
loads of network elements. With modelling, one can compare topologies, 
architectures and configurations and optimise the use of the resources. 

Queuing models of the communication networks are systems of service 
stations (with queues) and customers travelling among them. The service 
stations represent lines, nodes, switches, routers and other network elements; the 
customers represent packets; the queues represent queues of packets waiting in 
network devices for being sent. 
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Queuing models render real properties of the networks well and enable 
relatively easy efficiency analysis. These models can be solved by various 
mathematical manners such as mean value analysis [1], Markovian models [2], 
diffusion approximation [3], network calculus [4], fluid-flow approximation 
[5,6]. In this paper Markovian models are presented. 
 

2. Markov chains 
A stochastic process X(t) is a set of random variables, defined in the same 

probability space and indexed by t. For every itt =  there is defined a 
distribution function: 
 ( ; ) [ ( ) ]X i iF x t P X t x= ≤ . 

Values of the variables form the state space of the process, which can be 
continuous or discrete – in the latter case the process is called a chain. Statistical 
dependencies between ( )iX t  for different ti can be described by an  
n-dimensional distribution function 
 

1 ,..., 1 1 1 1( ,..., ; ,..., ) [ ( ) ,..., ( ) ]
nX X n n n nF x x t t P X t x X t x= ≤ ≤ . 

Markov processes are a special class of stochastic processes – they have the 
Markovian property (“they lack the memory” as it is colloquially referred), 
namely, they fulfil 
 0 0[ ( ) | ( ) ,..., ( ) ] [ ( ) | ( ) ]n n n nP X t x X t x X t x P X t x X t x≤ ≤ ≤ = ≤ ≤  
for every 0...nt t t> > > . 

The state space of a Markov chain is usually mapped to a subset of the set of 
natural numbers. The parameter t may belong to a continuous set or a discrete 
one. In the former case we have a continuous time Markov chain (CTMC) and in 
the latter case we have a discrete time Markov chain (DTMC). The modelled 
system – and the Markov chain representing it – adopts exactly one state at any 
time moment t. The evolution of the modelled system is rendered by transitions 
between states in Markov the chain. The most frequently needed piece of 
information is the probability of a given state (or states) appearance at a given 
time moment t – or after a very long (“infinite”) time (if the initial state has less 
and less influence we search stationary probabilities). 
We are interested in such stationary probabilities of a homogeneous, 
irreducible CTMC. Such chains appear in Markovian modelling of 
communication networks. Such a chain may be described with one matrix 
Q, called an infinitesimal generator matrix. It can be defined as 
following: 
 1 ,( )ij i j mq ≤ ≤=Q , 

 
0

( )
lim ij

ij t

p t
q

t∆ →

∆
=

∆
       for i j≠ , 
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 ii ij
j i

q q
≠

= −∑ , 

where ( ) [ ( ) | ( ) ]ijp t P X t t j X t i∆ = + ∆ = = . 
The stationary probabilities mentioned above can be obtained from a linear 

system: 
 =πQ 0 , (1) 
where 1( ,..., )mπ π=π , ≥π 0 , 1=πe  is a vector of desired probabilities. There 
are many ways to obtain the solution from (1), some of them were considered in 
[7,8]. 
 

3. Modelling the RED mechanism 
The Random Early Detection (RED) mechanism [9] is an algorithm helping 

to avoid connection congestion. It is an active queue management (AQM) 
algorithm being introduced in IP routers in the network layer. This algorithm 
does wait with dropping packets for the moment when the queue is full but starts 
dropping them randomly somewhat earlier (hence its name), when the queue 
length starts to grow too fast. This algorithm is supposed to enhance the quality 
of network services. 

In this algorithm, when a packet arrives, a weighted average queue length is 
calculated as following: 
 (1 )avg x avg w n= − ⋅ + ⋅ , 
where w is fixed (and small) and n is the current size of the queue. Moreover, 
there are two fixed thresholds: min and max (min<max). If the average queue 
length just computed is greater than max, the packet just received is dropped; if 
it is less than min, the packet is saved. However, between the thresholds the 
packet can be dropped or not (see figure 1; λ  and µ  are arrival and departure 
intensities, respectively). The exact formula for the drop probability is given 
below: 

 

0, for ,

( ) , for , ,

1, for max.

d max

avg min
avg minp avg p avg min max
max min

avg

<⎧
⎪ −⎪= ⋅ ∈⎨ −⎪

>⎪⎩

 

In other words: the longer the queue is, the more likely the packet is dropped 
(see figure 2). 

 
Fig. 1. The RED mechanism 
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Fig. 2. The drop probability )(avgpd  in the RED mechanism 

 
In [10] a model was proposed which can be used to analyse the activity of a 

RED-enabled switch. The behaviour of the switch for various drop probabilities 
was analysed. A CTMC was used for modelling the switch behaviour, with 
states defined by vector 1 2 3 4 5 6( , , , , , )V n n n n n n= , where n1 is the current size of 
the queue, n2 is equal to avg⎢ ⎥⎣ ⎦ , and ni (for i=3,4,5,6) make an approximation of 
avg avg− ⎢ ⎥⎣ ⎦  as following: 

 )3 2
4 41, for , ,

0, else.

i i

i

avg avg
n

− −⎧ − ∈⎢ ⎥⎪ ⎣ ⎦= ⎨
⎪⎩

 

A new packet arrival is represented by a transition of the Markov chain state 
from ( )1 2 3 4 5 6, , , , ,n n n n n n  to ( )1 2 3 4 5 61, *, *, *, *, *n n n n n n+  with intensity 

( )1 dp avgλ ⎡ ⎤⋅ −⎣ ⎦ , where 2 6*,..., *n n  represent avg calculated after the new 
packet arrival. A packet departure is represented by a transition from state 
( )1 2 3 4 5 6, , , , ,n n n n n n  to ( )1 2 3 4 5 61, , , , ,n n n n n n−  with intensity µ. This model 
allows researching the influence of particular parameters of the RED algorithm 
on the queue size, loss probability and so on. 
 

4. Modelling self-similarity 
The traffic in networks is a self-similar process whose Hurst parameter grows 

with the traffic intensity. The Hurst parameter mentioned above describes a 
degree of the self-similarity of the stochastic process defined as the amount of 
information received in a time unit. The process self-similarity is connected to 
the traffic long-range dependence (its “burstyness”), and this means that such 
traffic is difficult to model with Markov chains (“memoryless”, in a sense). 
Moreover, when the traffic is self-similar, the queues are getting longer (on 
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average), and the packet loss probabilities are getting greater – it makes the 
quality of network services worse. 

The self-similarity of a continuous-time process can be defined [11] as 
following: the stochastic process X(t) is statistically self-similar with the Hurst 

parameter H, ( )1
2 ,1H ∈ , if for every g>0 a process 

( )
H

X gt
g

 has the same 

statistical properties (mean, variance, autocorrelation) as X(t), that is: 

 ( )
( )
H

E X gt
E X t

g
⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦ , 

 [ ] ( )
2( ) H

Var X gt
Var X t

g
⎡ ⎤⎣ ⎦= , 

 ( ) ( )
2

,
, X

X H

R gt gs
R t s

g
= . 

The definition for a discrete-time process is slightly different: the stochastic 
process kX  is statistically self-similar with the Hurst parameter 21H β= −  if 

equations [ ]( ) km
k

Var X
Var X

mβ
⎡ ⎤ =⎣ ⎦  and ( ) ( )( )m kk

XX
R k R k=  hold for an aggregated 

process ( ) 1 ...m mk m mk
k

X XX
m

− + + +
=  for every m. 

Here is presented (from [12]) a manner for investigating the self-similar 
traffic influence on the network buffers congestion and a way for adaptive 
shaping such a traffic. 

A source of the self-similar traffic is modelled with the use of compound 
Markov chains. The traffic is generated as a superposition of d two-state MMPPs 
(Markov Modulated Poisson Process) [13]. Each of these d MMPPs may be in 
one of two states, but one of these states means no activity – such an MMPP is 
also called SPP (Switched Poisson Process). The ith ),...,1( di =  source can be 
described with the following parameters: 

– 1iλ  – the source intensity in state 1, 
– 2iλ  – the source intensity in state 2, 
– 1ic  – the intensity of the transition from state 2 to state 1, 
– 2ic  – the intensity of the transition from state 1 to state 2. 
Hence, the probabilities of being in the state s, s=1,2, for the source i are 

1 2

si
si

i i

c
c c

π =
+

, and the average source intensity is 1 1 2 2i i i i iλ π λ π λ= + . 
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Figure 3 shows a model of the whole transmission route. In this model there 
are d SPP sources (representing together one source of a self-similar traffic 
received from the user; the bigger d is, the better self-similarity approximation 
can be achieved), a traffic shaper (which smoothes the traffic to maintain a high 
level of the network performance) and a finite queue service station (which can 
be interpreted as a network edge node). 

 
Fig. 3. The investigated model 

 
In [12] a dynamic shaping mechanism is considered. It is based on a jumping 

window T, which means that the number of arrivals arrn  is observed in a fixed 
time interval T and it is used to control the behaviour of the shaper during the 
next time interval T. The service rate µ describes how many packets are to be let 
in in the current interval T and depends on aven  (see below). 

The behaviour of the whole system shown in figure 1 is modelled by a CTMC 
X(t) with d=4. As a state representation a vector 

( ) ( )1 2 3 4, , , , , , , ,shap arr ave netX t s s s s r n n n n=  is chosen, where: 

– si (i = 1,…,4) is the state of the ith source (si = 1 – the source is on and 
generates traffic, si = 0 – the source is off), 

– r (r = 0,…,R) is the current phase of Erlang distribution 
approximating the constant time T (the bigger R, the better 
approximation), 

– nshap (nshap = 0,…, Nshap) is the number of packets in the shaper, 
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– narr (narr = 0,…, Narr) is the number of packets received during the 
current time interval, 

– nave (nave = 0,…, Narr) aven  is an average number of packets received 
computed at the end of each interval as: (1 )ave ave arrn n nα α= ⋅ + − ⋅⎢ ⎥⎣ ⎦ ; 
the service rate µ depends on it and is computed from the equation: 

aven
T

µ = , 

– nnet (nnet = 0,…, Nnet) netn  is the number of packets in the network edge 
node. 

For nshap < Nshap every arrival causes growth of nshap and narr by one; however, 
for nshap = Nshap the received packet is lost and nothing changes. When an 
intermediate Erlang phase (r<R) ends, r grows by one; and when the last Erlang 
phase (r=R) ends, the new nave is computed, and both r and narr are set to zero. 
Every departure of a packet (from the shaper to the network) causes the 
decrement of nshap by one, and the increment of nnet. When the packet is served, 
nnet decreases by one. 

The stationary probabilities of X(t) can be defined as following: 
 ( )

1 2 3 4 5 6 7 8 9, , , , , , , , 1 2 3 4 5 6 7 8 9lim ( ) , , , , , , , ,n n n n n n n n n n
P X t n n n n n n n n nπ

→∞
⎡ ⎤= =⎣ ⎦  

and the stationary probabilities vector – as ( )1 2 3 4 5 6 7 8 9, , , , , , , , for all possible i
n n n n n n n n n n

π=π . It 

can be computed from (1). Now, the influence of T and α on the performance of 
the shaper can be investigated; moreover the performance of the network may be 
analysed for various values of the other parameters as well. 

Addition of SPP sources (for better approximation of the self-similarity) 
causes exponential growth of the number of states (namely, it grows twice for 
every SPP source added). 
 

5. Conclusions 
Some examples of the use of Markov chains for analysis mechanisms and 

phenomena of contemporary networks are presented above. A model of the RED 
mechanism [9] and a manner for investigating shapers of the network traffic [12] 
were quoted. In these areas Markov chains confirm their usefulness. Their 
advantages are: possibilities of unrestricted configuration of investigated 
networks and arbitrary approximation of the traffic nature. The flaws of the 
method can also be seen: the great number of the states and the big cost of 
computation connected to that number. 
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