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Abstract
The paper contains the review and the discussion on modelling communication networks with
the use of queuing models and Markov chains. It shows how to take into account various
characteristics of real systems — like some control mechanisms and the traffic self-similarity. There
are presented two mechanisms modelled with Markov chains: the RED algorithm in TCP/IP and a
self-similar traffic shaping.

1. Introduction

Communication networks are getting more and more complicated nowadays.
They allow storing, processing and transferring an enormous amount of data.
Internet (as a global information medium) and its growth is an example of the
network capabilities. Communication network activities depend on many
factors, related to each other. They are being improved to fulfil more and more
elevated and various users’ needs.

To anticipate a network activity, one needs suitable tools that can evaluate the
network and its work. Communication networks’ modelling is such a tool. It
allows estimating behaviour of the network at the project stage, localizing
congestion points and bottlenecks, finding packet loss probabilities and peak
loads of network elements. With modelling, one can compare topologies,
architectures and configurations and optimise the use of the resources.

Queuing models of the communication networks are systems of service
stations (with queues) and customers travelling among them. The service
stations represent lines, nodes, switches, routers and other network elements; the
customers represent packets; the queues represent queues of packets waiting in
network devices for being sent.
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Queuing models render real properties of the networks well and enable
relatively easy efficiency analysis. These models can be solved by various
mathematical manners such as mean value analysis [1], Markovian models [2],
diffusion approximation [3], network calculus [4], fluid-flow approximation
[5,6]. In this paper Markovian models are presented.

2. Markov chains

A stochastic process X(f) is a set of random variables, defined in the same
probability space and indexed by ¢ For every f¢=t# there is defined a

distribution function:
F,(x;t))=P[X(t,)<x].
Values of the variables form the state space of the process, which can be
continuous or discrete — in the latter case the process is called a chain. Statistical
dependencies between X(z,) for different # can be described by an

n-dimensional distribution function
FXl,---,X,, (X yeees X, 5t 5eent, )= PLX(£) < X),.., X(£,)<x,].

Markov processes are a special class of stochastic processes — they have the
Markovian property (“they lack the memory” as it is colloquially referred),
namely, they fulfil

PIX()<x|X(t)<x,,..,X(t,)<x,]=P[X(1)<x|X(t,)<x,]
forevery t >t >..>1,.

The state space of a Markov chain is usually mapped to a subset of the set of

natural numbers. The parameter ¢ may belong to a continuous set or a discrete
one. In the former case we have a continuous time Markov chain (CTMC) and in
the latter case we have a discrete time Markov chain (DTMC). The modelled
system — and the Markov chain representing it — adopts exactly one state at any
time moment ¢. The evolution of the modelled system is rendered by transitions
between states in Markov the chain. The most frequently needed piece of
information is the probability of a given state (or states) appearance at a given
time moment ¢ — or after a very long (“infinite”) time (if the initial state has less
and less influence we search stationary probabilities).
We are interested in such stationary probabilities of a homogeneous,
irreducible CTMC. Such chains appear in Markovian modelling of
communication networks. Such a chain may be described with one matrix
Q, called an infinitesimal generator matrix. It can be defined as
following:

Q= (q[j)lsi,jsm >
(At
g = lim P28

fori#j,
Ym0 Af J
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q; = _Z% >

J#

where p,(At)=P[X(t+At)=j| X()=i].

The stationary probabilities mentioned above can be obtained from a linear
system:

nQ=0, (1

where nn=(x,,...,7,), =0, me=1 is a vector of desired probabilities. There

are many ways to obtain the solution from (1), some of them were considered in
[7.,8].

3. Modelling the RED mechanism

The Random Early Detection (RED) mechanism [9] is an algorithm helping
to avoid connection congestion. It is an active queue management (AQM)
algorithm being introduced in IP routers in the network layer. This algorithm
does wait with dropping packets for the moment when the queue is full but starts
dropping them randomly somewhat earlier (hence its name), when the queue
length starts to grow too fast. This algorithm is supposed to enhance the quality
of network services.

In this algorithm, when a packet arrives, a weighted average queue length is
calculated as following:

avg=(1-x)-avg+w-n,
where w is fixed (and small) and # is the current size of the queue. Moreover,
there are two fixed thresholds: min and max (min<max). If the average queue
length just computed is greater than max, the packet just received is dropped; if
it is less than min, the packet is saved. However, between the thresholds the
packet can be dropped or not (see figure 1; A and p are arrival and departure

intensities, respectively). The exact formula for the drop probability is given

below:

0, for avg < min,

p,(avg) = L_ml_n-pm_, for avg e <min,max>,

max — min

1, for avg > max.
In other words: the longer the queue is, the more likely the packet is dropped
(see figure 2).

u
A
| (O—

max min
Fig. 1. The RED mechanism
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. | avg

min max

Fig. 2. The drop probability p, (avg ) in the RED mechanism

In [10] a model was proposed which can be used to analyse the activity of a
RED-enabled switch. The behaviour of the switch for various drop probabilities
was analysed. A CTMC was used for modelling the switch behaviour, with
states defined by vector V = (n,,n,,n;,n,,ng,n;), where n; is the current size of

the queue, n, is equal to Lavgj , and n; (for i=3,4,5,6) make an approximation of

avg — LavgJ as following:

0 = 1, for avg —Lavgj € <%,%),
0, else.

A new packet arrival is represented by a transition of the Markov chain state
from  (n,n,,ny,n,,n.,n) to  (n +Ln*n*n*n*n*) with intensity

/1-[1— Py (avg)}, where n,*,...,n,* represent avg calculated after the new

packet arrival. A packet departure is represented by a transition from state
(m,ny,ny,n,,n5,n) to (m —1,ny,ny,n,,ns,n;) with intensity x This model

allows researching the influence of particular parameters of the RED algorithm
on the queue size, loss probability and so on.

4. Modelling self-similarity

The traffic in networks is a self-similar process whose Hurst parameter grows
with the traffic intensity. The Hurst parameter mentioned above describes a
degree of the self-similarity of the stochastic process defined as the amount of
information received in a time unit. The process self-similarity is connected to
the traffic long-range dependence (its “burstyness”), and this means that such
traffic is difficult to model with Markov chains (“memoryless”, in a sense).
Moreover, when the traffic is self-similar, the queues are getting longer (on
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average), and the packet loss probabilities are getting greater — it makes the
quality of network services worse.

The self-similarity of a continuous-time process can be defined [11] as
following: the stochastic process X(¢) is statistically self-similar with the Hurst

X(gt)

H

parameter H, H e(%,l), if for every g>0 a process has the same

statistical properties (mean, variance, autocorrelation) as X(¢), that is:

E[X(z)]:%,

var x (o] = L&)
R, (gt.gs)
RX . :T'
(t.5) 2

The definition for a discrete-time process is slightly different: the stochastic

process X, is statistically self-similar with the Hurst parameter H =1—§ if

equations Var[X ,E””] = %j(k] and R, (k)= Ry (k) hold for an aggregated
m k
Xy oot X

(m) _ mk
process X, = for every m.

m

Here is presented (from [12]) a manner for investigating the self-similar
traffic influence on the network buffers congestion and a way for adaptive
shaping such a traffic.

A source of the self-similar traffic is modelled with the use of compound
Markov chains. The traffic is generated as a superposition of d two-state MMPPs
(Markov Modulated Poisson Process) [13]. Each of these d MMPPs may be in
one of two states, but one of these states means no activity — such an MMPP is
also called SPP (Switched Poisson Process). The ith (i =1,...,d) source can be
described with the following parameters:

— A, —the source intensity in state 1,

— A,; —the source intensity in state 2,

— ¢, —the intensity of the transition from state 2 to state 1,

— ¢,, —the intensity of the transition from state 1 to state 2.

Hence, the probabilities of being in the state s, s=1,2, for the source i are

C, . N
— St —
T, = P and the average source intensity is A =7, 4, + 7,,4,,.
1i 2i
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Figure 3 shows a model of the whole transmission route. In this model there
are d SPP sources (representing together one source of a self-similar traffic
received from the user; the bigger d is, the better self-similarity approximation
can be achieved), a traffic shaper (which smoothes the traffic to maintain a high
level of the network performance) and a finite queue service station (which can

be interpreted as a network edge node).
Cz1

SHAPER NSE\I,WSEK
| — [ 20— 10—+
: ? H unet

Fig. 3. The investigated model

In [12] a dynamic shaping mechanism is considered. It is based on a jumping
window 7, which means that the number of arrivals n,, is observed in a fixed

time interval T and it is used to control the behaviour of the shaper during the
next time interval 7. The service rate u describes how many packets are to be let
in in the current interval 7 and depends on n__ (see below).

The behaviour of the whole system shown in figure 1 is modelled by a CTMC
X(®) with d=4. As a state representation a vector

X(t)= (sl,sz,s3,s4,r,ns,mp,narr,nave,nnet) is chosen, where:

— s5; (i=1,...,4) is the state of the ith source (s;=1 — the source is on and
generates traffic, s; = 0 — the source is off),

- r (r=0,.,R) is the current phase of Erlang distribution
approximating the constant time 7 (the bigger R, the better
approximation),

— Mgy (Mgnap = 0,..., Nygp) 18 the number of packets in the shaper,
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— N (Nar=0,..., N,,) 1s the number of packets received during the
current time interval,

— Nave (Mae=0,..., Nuv)n,,, 1s an average number of packets received
computed at the end of each interval as: n,, =|a-n,, +(1-a)-n,, |;

the service rate x depends on it and is computed from the equation:

_ nave
H T

= Nye (M4 = 0,..., Nuor) 1, 15 the number of packets in the network edge

t
node.

For ngq, < Ngigp every arrival causes growth of ng,, and n,, by one; however,
for ngep = Ny the received packet is lost and nothing changes. When an
intermediate Erlang phase (»<R) ends, » grows by one; and when the last Erlang
phase (r=R) ends, the new n,,, is computed, and both » and n,,, are set to zero.
Every departure of a packet (from the shaper to the network) causes the
decrement of ng,, by one, and the increment of n,,,. When the packet is served,
1, decreases by one.

The stationary probabilities of X(#) can be defined as following:

=}11i_r>2P[X(t) =(nl,nz,n3,n4,n5,n6,n7,n8,n9)]

Ny 51y 513 51y 515,16 5117 5118 1

and the stationary probabilities vector — as & = It

T .
( M M350 5715506 717511879 [ g0 a1 possible n,
;

can be computed from (1). Now, the influence of 7 and « on the performance of
the shaper can be investigated; moreover the performance of the network may be
analysed for various values of the other parameters as well.

Addition of SPP sources (for better approximation of the self-similarity)
causes exponential growth of the number of states (namely, it grows twice for
every SPP source added).

5. Conclusions

Some examples of the use of Markov chains for analysis mechanisms and
phenomena of contemporary networks are presented above. A model of the RED
mechanism [9] and a manner for investigating shapers of the network traffic [12]
were quoted. In these areas Markov chains confirm their usefulness. Their
advantages are: possibilities of unrestricted configuration of investigated
networks and arbitrary approximation of the traffic nature. The flaws of the
method can also be seen: the great number of the states and the big cost of
computation connected to that number.
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