

Annales UMCS Informatica AI 4 (2006) 123-134
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Analysing system susceptibility to faults with simulation tools

Piotr Gawkowski, Janusz Sosnowski*

Institute of Computer Science, Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warszawa, Poland

Abstract
In the paper we present original fault simulation tools developed in our Institute. These tools

are targeted at system dependability evaluation. They provide mechanisms for detailed and
aggregated fault effect analysis. Based on our experience with testing various software
applications we outline the most important problems and discuss a sample of simulation results.

1. Introduction
Digital systems are widely used in various application areas including those

with high reliability, availability and safety requirements (e.g.
telecommunication, medicine, aviation, industrial control systems, banking).
These requirements are the most important in so called dependable systems. To
increase system dependability we use in general three techniques: fault
avoidance, fault masking and fault tolerance [1,2]. The main idea of fault
avoidance techniques is to prevent fault occurrence. This is achieved by design
reviews and automation, part selection, screening, lowering power consumption,
software rejuvenation etc. Fault masking techniques hide the faults and prevent
occurrence of errors using error correction codes or passive redundancy e.g.
triple modular redundancy with voting. Fault tolerance techniques detect faults,
identify them and perform appropriate recovery (e.g. replacing a faulty model by
a spare one).

An important practical issue is to evaluate system dependability. This can be
done using various analytical models, collecting reports on system operation
from the field and by simulating faults and observing system susceptibility to
these faults. This last approach gains high interest in recent years. Various tools
have been developed for this purpose [3-10]. They are targeted for models or
working systems (execution-based). Simulating faults in a system model (e.g.
based on hardware description language VHDL or Verilog) assures high

*Correponding author: e-mail address: jss@ii.pw.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Piotr Gawkowski, Janusz Sosnowski 124

flexibility, however, it is cumbersome for complex systems. Hence, various fault
injection techniques into the working systems are widely reported in the
literature [3-5,10,11]. In our Institute we have developed efficient tools for
injecting faults into computer systems. These tools are systematically improved
and used successfully in our research as well as in didactic. They comprise some
original features not encountered in other tools and are recognized by other
European institutions involved in dependability problems. In particular, our tools
assure better experiment controllability, capability of detailed tracing of fault
effects and correlation with various application properties. This has created new
possibilities in dependability analysis. In section 2 we describe our fault
injectors and give some illustrative experimental results as well as our remarks
gained due to research experience with using these tools in the context of other
tools. Due to some encountered problems we have developed other specialized
supplementary simulation tools described in section 3. In the conclusion we
summarize our experience and outline directions of our future research in this
topic.

2. Software implemented fault injectors

In 1998 we have developed the fault injector (FITS) operating in Windows
environment on IBM PC compatible platform. It has been systematically
enhanced and modified. It was also the basis for other simulators targeted for
multithreaded applications (MTI) and Linux environment (LIN). Using theses
fault injectors for many years in student projects as well as in research, we have
gained rich experience. The latest version of FITS proved that it is the one of the
most complex, flexible and easy to use SWIFI (software implemented fault
injector) tool reported in literature. It uses standard Win32 Debugging API to
control the execution of the software application under test. During the so called
Golden Run (GR) the execution trace as well as the execution results are saved
in a log file (GRL). Additionally, statistic information is gathered on the tested
application e.g. resource usage, code size, instruction distribution. FITS, as
opposed to most of other SWIFI tools reported in literature, works on a single
IBM PC compatible computer under Win32 operating systems family (Windows
NT, 2000, XP). The experiments can be done on the executable code of the
application (this is important if the source code is not available). However, some
source code modifications (described later) can be helpful to simplify fault effect
propagation analysis.

In FITS faults are simulated by disturbing the running application. In this
process an important issue is the type, location and time of fault injection. To
assure better experiment controllability we admit so called testing areas. Such
areas can be marked with the use of the predefined magic sequence in the source
code of the application (every odd occurrence of this sequence begins new
testing area while every even – closes current testing area). There can be many

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Analysing system susceptibility to faults with simulation tools 125

testing areas defined within a single execution of the application. Another
possibility to mark the testing area is to define two addresses of the instructions
in the application code – execution of the first one starts testing area, execution
of the second one – terminates it. Here no source code modifications are needed.
Testing areas are very useful. They can limit the scope of disturbances only to
the most interesting parts of the analyzed application. Additionally, they allow
creating some extra code, not disturbed during experiments, sometimes
necessary to run the analyzed application.

Another optional modification of the application to be tested is the insertion
of user-messages, which are captured and collected by the FITS during
experiments. This mechanism provides supplementary communication between
the tested application and FITS and has no impact on the application behavior as
the communication channel used (Win32 Debugging API) guarantees that.
Using this mechanism, the tested application can signal detected errors, the path
of fault propagation, efficiency of fault forecast boundaries etc. This simplifies
tracing fault effects.

An important issue in experiments with fault injectors is qualification of
results. This problem was neglected in literature due to the fact that the authors
in most cases analyzed simple calculation-oriented applications where the
incorrect results are easily identifiable. It is much more complicated for other
classes of applications e.g. oriented at database, document or signal processing,
real-time applications in process control. First of all, the result of such
applications has to be identified taking into account its aspects related to value,
time of delivery, impact on performed data processing etc. In some applications
the accepted levels of result deviations as well as error severity should also be
defined. For example, in controlling processes of a mechanical object, spurious
temporary fault control signals can be tolerated by the object inertia. To resolve
this problem, in FITS the correctness oracle is specified in accordance with
specific features and characteristics of the tested application. Some illustration is
given in [10,12,13].

2.1. Experiment setup

FITS can emulate permanent errors as well as Single or Multiple Event
Upsets (SEU and MEU) related to transient faults, which dominate in
contemporary systems [1,14,15]. Faults can be injected into the main resources
available at the machine code level of the application. A fault to be injected is
defined by the type of modifying operation (e.g. XOR, SET, RESET) performed
on the target fault location (e.g. a register) in specified (in a so called bit-mask)
bit positions. The experiment is configured using convenient GUI interface (an
illustrative window is given in Fig. 1).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Piotr Gawkowski, Janusz Sosnowski 126

Fig. 1. FITS window for defining fault injections

The duration of a faulty state can also be programmed as a period from one

machine cycle to even permanent faulty state. In FITS it is also possible to
mimic the effects of complex faulty behavior or source-code level errors (e.g.
execution of additional user-defined code, delays in processing paths, coding
errors).

The fault injection process is preceded by execution of the analyzed
application (without faults) in the so-called Golden Run mode. In this mode
FITS traces the application execution and collects various statistics. The
collected information helps to profile the experiments (e.g. by showing Activity
Ratio [12,13,16] of resources), in particular facilitates fault distribution over
execution time and resource space [13,16,17]. To achieve higher efficiency, the
target location is disturbed just before being used (by the application under test).
Faults can be located in CPU registers, application code, stack, data memory,
FPU etc. Fig. 1 shows FITS dialog window for selection of fault locations. The
list on the left side contains all possible fault locations. The user can select any
of them and move with the buttons to the list of selected locations (list on the
right side of the dialog). Faults can be defined explicitly by the operator or
generated pseudorandomly. FITS assures the experiment repetitiveness, which is
useful in deeper analysis of fault effects. This is a unique property, not available
in similar tools reported in literature. Injected faults can be emulated for the
explicitly defined set of faults (with specified location and triggering moments)
or generated automatically with a specified profile.

2.2. Experiment reports

A fault injection experiment is composed of tests specified in some preset
configuration. Each test relates to a single execution of the tested application
with an injected fault (or faults). All side effects of injected faults are stored, so
the fault propagation can be traced in detail. However, some aggregation and

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Analysing system susceptibility to faults with simulation tools 127

filtering functions (to limit the volume of the collected data) can also be
included. An example of a single fault injection test report is shown in Fig. 2.

Address of instruction at which fault was injected: 401297
Instruction execution moment: 14
Fault location: RANDOM within instruction
Instruction before first injection: 00401297: 77c9 ja 00401262
Instruction after first injection: 00401297: 37 aaa
Fault mask: randomly selected one bit
Bit disturbance operation: XOR
Fault duration: 1 instruction
Program was terminated
Exit code:254 was not correct
Messages during execution:
* Access Violation while reading - first chance at Eip=4012A3h
* Access Violation while reading - first chance at Eip=10208h
* Access Violation while reading not handled by debugee at Eip=10208h
 - Second time - terminating

Fig. 2. A sample of a single test report

It comprises fault injection time (instruction address and its execution

moment – 14th), location etc. This fault (single bit flip in instruction code)
resulted in changing the instruction to be executed from conditional jump (ja
0x00401262) to arithmetic adjust (aaa). That led the application to two
exceptional situations (listed as messages). The first one was generated by the
attempt to read unavailable memory by instruction at the address 0x004012A3.
FITS gives the possibility to handle the first occurrence of exception by the
application (specified as the first chance). Unfortunately, the injected fault
generated another (second) exception – this time not handled, so at the second
occurrence of the same exception the application was terminated.

For experiments with many fault injections (e. g. generated pseudorandomely
in a specified resource) all tests are performed automatically and beyond detailed
test reports we obtain aggregated results. In particular, we can get the percentage
of results registered within specified 5 categories: C – correct result, INC –
incorrect result or wrong timing of its delivery, S – fault detected by the system
(specification of the number and types of registered exceptions), T – time-out,
U – user-defined messages generated by the tested application (e.g. signalling
faulty behaviour). Moreover, in aggregated experiment report all user-defined
messages are listed with the number of its appearance. There is also a possibility
to deliver experimental results to the database for easier further processing and
visualization. In embedded systems the correct result classification may admit
some minor anomalies e.g. short output signal transients, delays etc. Most

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Piotr Gawkowski, Janusz Sosnowski 128

embedded applications run continuously but the result observation cannot be
infinite process. We can limit it to some delay after the fault injection and
control some internal states, which may have influence in the future operation.

2.3. Examples of simulation results

The usefulness of FITS was verified in many student projects and research
studies. To give a better view on experimentation capabilities we give a sample
of illustrative results for a calculation-oriented application. The analyzed
program is the Fast Fourier’s Transformation (FFT) from publicly available
library – FFTW [13]. We have analyzed two versions of this program:

– V1 – the original simple implementation of FFT calculation, with neither
fault detection nor fault tolerance mechanisms,

– V2 – modified application V1 comprising original fault detection and fault
tolerance mechanisms introduced in [13].

Version V2 is based on time and code redundancy enhanced with exception
handling. Input data is processed in iterations. Each iteration is processed twice
by replicated COTS components (code and time redundancy). Moreover, it is
guarded by the exception handling mechanism. This protects (with high
coverage) the controlling algorithm from possible disturbances caused by a
faulty processing component. The obtained pair of results is compared and in
case of consensus the result is delivered as the application output. Any detected
exception or disagreement between results initiates internal testing and recovery
procedure (data and code consistency and recovery). It is followed by the third
repetition of calculations and then voting over three results. Implementation
details are given in [13].

Both versions V1 and V2 were tested with FITS and disturbed by single bit-
flip faults injected randomly into the application code (instructions), CPU
registers, FPU, application stack and data memory area. Around 1000 tests were
made for each fault location. Experimental results are presented in Fig. 3. It
shows the percentage of basic test categories (C – correct, INC – incorrect, S –
system exceptions, T – time-outs) depending upon the location of injected faults
(instructions, registers etc.). For each location we give a pair of bars. The left
one corresponds to the V1 version and the right one to the V2 version.

The experiments proved high efficiency of implemented fault tolerance
mechanisms for the considered fault model. We have observed that some
exceptions are not intercepted at the application level (to perform correction), so
the application is terminated by the operating system. This results from some
discrepancies of Windows, hence, further research targeted at improving this
issue is required. Table 1 gives a representative distribution of not handled
exceptions in Win32 environment as a consequence of single bit-flip faults in the
instruction codes.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Analysing system susceptibility to faults with simulation tools 129

Fig. 3. Fault susceptibility of two versions of FFT algorithm

Table 1. Distribution of exceptions

Exception %
ACCESS VIOLATION 80.6

ILLEGAL INSTRUCTION 5.5
STACK OVERFLOW 4.8

BREAKPOINT 4.7
PRIVELAGE INSTRUCTION 4.3

ARRAY BOUNDS EXCEEDED 0.1
INTEGER OVERFLOW 0.1

In the case of faults injected in the application code the most effective system

mechanism of fault detection is Access Violation. The memory management unit
triggers it, if the application violates memory access rights. Significant
percentage of access violation results from the high probability of disturbing
referenced addresses in such a way that unreachable memory regions are
targeted. Hence, the classical control flow checking mechanisms (e.g. [1,18,19])
are not so effective in the Win32 applications as in embedded systems, which
usually do not comprise memory protection mechanisms.

In experiments with various applications we observed different fault
susceptibility in different segments or modules of these applications. Moreover,
the probability of fault occurrence in a memory is a function of the used memory
space. Sometimes parts of the application with high fault sensitivity are executed
scarcely but occupy a large memory space. So, the distribution (in time and
space) of injected faults has to be programmed carefully during the experiment
setup. These issues are analyzed in [13,16,17].

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Piotr Gawkowski, Janusz Sosnowski 130

3. Supplementary simulation tools
To evaluate system dependability with fault injectors we have to simulate a

large number of faults in order to assure statistically significant results.
Moreover, to obtain representative results it is important to assure compatibility
of the test profile with the operational one [4,16,20]. For this purpose, we can
use statistics of input data or module utilisation and select representative test
scenarios to cover all possible situations. In this process some coverage
measures are helpful. We can deal with functional or structural coverage of the
application. Functional coverage is related to the application specifications.
Structural coverage can be related to program data and control flow [16]. We use
a special tool, which measures such structural features as:

– block coverage – coverage of blocks composed of code fragments without
branching (program is composed of branch free segments of code
comprising entry and exit points),

– decision coverage – measures the portion of decisions executed during
testing,

– c-use coverage – counts the number of combinations of an assignment to a
variable and a use of the variable in a computation that is not part of
conditional expression,

– p-use coverage – counts the number of combinations of an assignment to a
variable, a use of the variable in a conditional expression and all branches
based on the value of the conditional expressions,

– all-use coverage – c -use or p-use,
– du-path coverage – counts the number of paths from a variable’s definition

to its use, which contains no redefinition of the variable,
– path coverage – coverage of all allowed sequences of statements in the

program (practically not used).
SWIFI injectors are universal tools with high flexibility in the area of

experiment controllability and observability. This universality may create some
problems in specialised fault injection strategies related to time overhead of
injections as well as the necessity of complex specification of fault triggering.
Hence, for some well-defined problems it is more reasonable to use dedicated
fault simulators. In particular checking fault susceptibility of complex data
structures used by many applications is more efficient with specialised
simulators. Such complex data structures are used in applications dealing with
documents and databases etc. These structures comprise information related to
the processed data (e.g. text codes, graphical objects) and various control
information supporting performed operations. Moreover, some redundancy or
error detection and correction features are included. In contrast to calculation-
oriented applications, complex data structures show higher fault robustness. In
particular a large percent of faults has no influence on the operation due to some
redundancy. On the other hand, these applications perform various checking

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Analysing system susceptibility to faults with simulation tools 131

functions so many faults generate messages signalling incorrect operation. The
list of these messages is quite long. We have also analysed the fault
susceptibility distribution in function of fault location within the tested
documents. Some areas storing control information generated most of messages.

In the specialized simulators we can adapt fault injection locations in
correlation with logical structure of the analyzed data structures. On the other
hand, fault propagation effects are also controlled in a more efficient and
application oriented way. Here we may have specific signalling of errors by the
application (error messages), identification of abnormal states (e.g. hanging,
performing partially specified functions) etc. In specialized simulators we can
define test scenarios in the form of a sequence of appropriate actions with
appropriate data (simulation of an operator) specific for the considered class of
applications. In the case of calculation-oriented applications test scenarios can be
expressed only as simple categories of appropriate data sets.

In many applications, while qualifying their test results, we can admit some
disturbances as acceptable e.g. in text, graphical or sound files data disturbances
may reduce the quality of the represented information still preserving the logical
significance (text, image or sound are recognisable). Hence, while we evaluate
the test result we have to use application dependent qualification procedures. We
will illustrate this for a sample of results with randomly disturbed (bit-flip
errors) files by means of special simulators. These results relate to MS Excel,
LATEX, graphical and multimedia sound files.

While analyzing MS Office document fault susceptibility we have injected
single bit upsets randomly within the document area (equal distribution in
space). For MS Excel the injected faults generated only 12.6% of errors. An
interesting thing is that different document areas have various susceptibility to
faults. Some are either not used or redundant so no error was reported. Detected
errors by MS Excel related to mechanisms checking document format and
context of control information. Quite interesting is the distribution of document
errors: 17% have not been detected by the program (INC), 46% faults generated
Excel messages informing on the impossibility of loading document, 20% faults
were signaled as access violation, 12% faults were not visible after opening
document, however, new writing of the document generated Excel warning
messages or exceptions. In 5% of cases error messages (e.g. lack of free
memory) were not consistent with real faults.

LATEX files comprise text, commands, mathematical equations, comments
etc. Depending upon fault rate we could use the file or not (if some important
structural data is disturbed). For fault rates lower than 1/128 in 90% of cases the
file was available for processing. However, legible documents (with acceptable
errors) appear for fault rates at the level of 1/1000. It is interesting that
disturbing mathematical formulas with the fault rate up to 1/64 were acceptable.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Piotr Gawkowski, Janusz Sosnowski 132

In graphical files (e.g. JPG, BMP) an important issue is the level of image
disturbance. JPG files are accessible in over 90% for fault rates below 0.005
with possibility of general recognition of the image (disturbed in about 30%).
BMP files are very susceptible to faults in the area of the header (even single
upsets may block access to the file). Faults in data area lower image quality. For
the fault rates below 0.001 practically these disturbances are not visible.

Information structure wav for storing and processing sound comprises a
header (header length, number of sound channels, coding technique, average
sample rate etc.) and sound data samples. Disturbing wav files with transient
faults we observed that for the fault rates higher than 1/40 over 90% of files
were accessible but the play function in most cases was rejected. For the fault
rate 1/128 this function practically was available. The header area is very
sensitive to faults (even single upsets are critical). Faults in data part only
degrade sound quality, for the fault rate 1/10 the noise is very high but sound is
recognizable. We have also analyzed the impact of packet losses during
transmission of wav files via Internet. For transmitted music listeners did not
observe quality degradation (subjective evaluation) up to 3% of packet losses.
Losses up to 10% were acceptable. For 30% losses sound quality was very bad,
nevertheless still recognizable.

4. Conclusions

The developed fault simulation tools have been successfully used by many
M.Sc and Ph.D students in projects, diploma thesis and our research works. The
obtained results attracted the attention from other institutions active in
dependability research. In particular we compared simulation results obtained
with the model based fault injector MODELSIM [21] developed in Grenoble
TIMA3 laboratory for the car immobiliser developed in our Institute. Our
execution based fault injector assures much higher speed of fault injections.

SWIFI injectors assure relatively high speed. However, they have some
limitations in simulating faults at the level not accessible to the programmer.
Hence, in practice it is reasonable to develop hierarchical simulation. For
example characterising faulty behaviour of a module by simulating faults at a
lower level (e. g. electrical or RTL model). Such characterising experiments are
also reported in literature (e. g. [22-24]). Another critical problem relates to
experiment result qualification. This problem is not trivial in real time
applications, where some time or result value deviations can be considered as
acceptable as well as short transient pulses (tolerated by the inertia of the
controlled system). This problem is correlated with selecting representative test
scenario.

Recently many fault tolerance techniques in software have been proposed
(e.g. [13,19,25-30]). They are especially efficient for transient faults dominating
in contemporary systems [1,14,15]. The proposed ideas in literature can be

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Analysing system susceptibility to faults with simulation tools 133

implemented in different ways, so their optimization is needed. In this process
fault injectors are indispensable. Moreover, they are useful in dependability
evaluation of existing solutions.

In our further research we concentrate on increasing fault injection
effectiveness by distributing the fault injection processes in a computer network.
Other improvements can be achieved by extracting system behaviour in different
operation time frames and faster qualification of the experiment results (e. g. by
observing selected internal state variables). We also develop a new fault injector
for microcontroller systems. It is based on an original RTL level simulator [31].

Acknowledgment

This work was supported by KBN grant 4T11C049 25.

References
[1] Sosnowski J., Transient fault tolerance in digital systems. IEEE Micro, (1994) 24.
[2] Sosnowski J., Testowanie i niezawodność systemów komputerowych, EXIT, (2005), in Polish.
[3] Arlat J., et al., Comparison of physical and software implemented fault injection technique.

IEEE Trans. on Computers, 52(8) (2003) 115.
[4] Benso A., Prinetto P., Fault injection techniques and tools for embedded systems reliability

evaluation, Kluwer Academic Publishers, (2003).
[5] Carreira J., Madeira H., Silva J.G., Xception: a technique of the experimental evaluation of

dependability in modern computers. IEEE Trans. on Software Engineering, 24(2) (1998) 125.
[6] Chen M., Tsai T.K., Iyer R.K., Fault injections and tools. IEEE Computer, (1997) 75.
[7] Civera P., et al., Exploiting FPGA based techniques for fault injection campaigns on VLSI

circuits. Proc. of IEEE DFT Symposium, (2002) 250.
[8] Leveugle R., Fault injection in VHDL description and emulation. Proc. of IEEE DFT Symp.,

(2000) 414.
[9] Samson J.R., Moreno W., Falquez F., A technique for automated validation of fault tolerant

designs using laser fault injection. Proc. of IEEE FTCS-28 Symp., (1998) 162.
[10] Sosnowski J., Gawkowski P., Lesiak A., Software implemented fault inserters. Proc. of IFAC

PDS2003 Workshop, Pergamon, (2003) 293.
[11] Carderilli G.C., Kaddur F., Leanori A., Ottavi M., Pontarelli S., Velzaco R., Bit flip injection in

processor based architectures: a case study. Proc. of 6th IEEE On-Line Testing Workshop,
(2002) 117.

[12] Gawkowski P., Sosnowski J., Dependability evaluation with fault injection experiments.
IEICE Trans. Inf. & Syst., E86-D(12) (2002) 2642.

[13] Gawkowski P., Analysing and enhancing fault immunity of programs in systems with COTS
elements. Ph.D. thesis, Institute of Computer Science, Warsaw University of Technology,
(2005).

[14] Dodd P.E., Massengill L.W., Basic mechanisms and modeling of single-event upset in digital
microelectronics. IEEE Trans. on Nuclear Science, 49 (2003) 583.

[15] Normand E., Single Event Upset at Ground Level, IEEE Trans. Nucl. Sci., 43 (1996) 2742.
[16] Sosnowski J., Gawkowski P., Lesiak A., Fault injection stress strategies in dependability

analysis. Control and Cybernetics, 33(4) (2004) 679.
[17] Gawkowski P., Sosnowski J., Radko B., Analyzing the effectiveness of fault hardening

procedures. Proc. of the 11th IEEE Int’l On-Line Testing Symp., (2005) 14.
[18] Benso A., Di Carlo S., Di Nartale G., Prrinetto P., Tagliaferri L., Control flow checking via

regular expressions. Proc. of the 10th Asian Test Symposium, (2001) 299.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Piotr Gawkowski, Janusz Sosnowski 134

[19] Oh N., Shrivani P.P., McCluskey E.J., Control flow checking by software signature. IEEE Trans.
on Reliability, 51(1) (2002) 111.

[20] Madeira H., Some R.R., Costa F.D., Rennels D., Experimental evaluation of a COTS system for
space applications. Proc. of IEEE Int. Conf. on Dependable Systems and Networks, (2002) 325.

[21] Velazco R., Mochnacs J., Peronnard P., Calvo O., Analysis of the criticality of transient bit-
flip faults in a massive embedded application. Proc. of IEEE Latin America Test Workshop,
(2004) 178.

[22] Kim S., Somani A.K., Soft Error Sensitivity characterisation for Microprocessor
Dependability Enhancement Strategy. Proc. of IEEE Int. Conference on Dependable Systems
and Networks, (2002) 416.

[23] Pleskacz W., Kasprowicz D., Oleszczak T., Kuźmicz W., CMOS standard cells characterization
for defect based testing. Proc. of IEEE DFT Symp., (2001) 384.

[24] Saggese G.P., Vetteth A., Kalbarczyk Z., Iyer R., Microprocessor Sensitivity to Failures:
Control vs Execution and Combinational vs Sequential Logic. Proc. Of Int. Conf. on
Dependable Systems and Networks, (2005) 760.

[25] Cheynet P., et al., Experimentally evaluating an automatic approach for generating safety
critical software with respect to transient errors. IEEE Transactions on Nuclear Science,
47(6) (2000) 231.

[26] Nicolescu B., Velazco R., Reorda M.S., Effectiveness and limitations of various software
techniques for soft error detection, a comparative study. Proc. of 7th IEEE Int. Testing
Workshop, (2001) 172.

[27] Oh N., Mitra S., McCluskey E .J., ED4I Error detection by diverse data and duplicated
instructions. IEEE Trans. on Computers, 51(2) (2002) 180.

[28] Oh N., Shrivani P.P., McCluskey E.J., Error detection by duplicated instructions in super scalar
processors. IEEE Trans. on Reliability, 51(1) (2002) 63.

[29] Rebaudengo M., Reorda M.S., Violante M., A new software-based technique for low cost fault-
tolerant application. Proc. of Annual Reliability and Maintainability Symp., (2003) 25.

[30] Vargas F., et al., Briefing a new approach to improve the EMI immunity of DSP systems.
Proc. of IEEE Asian Test Symposium, (2003) 468.

[31] Wilczyński A., Sosnowski J., Gawkowski P., Flexible microcontroller simulation for testing
purposes. Proc. of IFAC Workshop on Programmable Devices and Systems, (2004) 310.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:04:10

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

