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Abstract
The case study analyzed in the paper illustrates the example of model checking in the COSMA
environment. The system itself is a three-stage pipeline consisting of mutually concurrent modules
which also compete for ashared resource. System components are specified in terms of
Concurrent State Machines (CSM) The paper shows verification of behavioral properties, model
reduction technique, analysis of counter-example and checking of real time properties.

1. Introduction

In [1] we have described the functional model of a system for processing of
consecutive portions of data (or messages) submitted to its input. Each message
goes through the three stages of processing which is reflected in the system
structure (Fig. 1). The system is a three-stage pipeline consisting of three
modules that operate concurrently and asynchronously, in a sense that there is no
general, common synchronizing process or mechanism. Moreover, two out of
three modules compete for the access to the common resource, which is accessed
also by some other (unspecified) agents from the system environment. This calls
for the verification if the cooperation among system components is correct.
Indeed, due to potential coordination errors the system can get deadlocked,
messages can be lost or duplicated etc. After the behavior is proved correct,
some real-time performance features may be formally analyzed: minimal and
maximal time of given actions, time intervals between events etc.

It is known that in the case of asynchronous and concurrent systems
behavioral errors are extremely hard to discover, identify and correct using
typical debugging and testing procedures. Therefore, we have applied a formal
procedure of model checking [2-5], using the software tool called COSMA [6],
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implemented in the Institute of Computer Science, Warsaw University of

Technology.
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Fig. 1. Flow of data in a three-module pipeline with a shared resource

Model checking is based on the following principle. Given the finite state
model M of system behavior and property (requirement) p to be checked, one
has to check if p holds for M. Usually, there is a set of techniques and algorithms
(making together the model-checking environment or tool) designed for this
purpose. This is a designer’s job to formulate properties to be evaluated: usually
the verification involves a set of model checking experiments with several
properties p;. Additionally, if the given property does not hold for M, then so-
called counterexample is provided which allows to identify the sequence of
states (or events) that results in this negative evaluation. This helps to identify
and correct the cause of an error.

The main limitation the model checking faces is the exponential explosion of
model’s state space size along with the increase of the number of finite state
system components and their individual state spaces. So, an extensive research is
being done on various techniques that can help to manage the problem. First,
multiple forms of reduction of state space are proposed, aimed at removal of the
states and transitions which are irrelevant w.r.t. the evaluation of a given
formula. The other approach is to calculate the state space just during the
evaluation, as one can expect that in order to obtain the outcome of the
evaluation only the bounded model will do. Still another technique consists in
compositional model checking, where some individual parts of a system (of
more acceptable size) are subject to an exhaustive state space search while the
conclusion as to the behavior of a whole system is reached by some logical
reasoning. Unfortunately, most ideas of reduction found in literature (e.g. [7,8])
usually cannot be applied for Concurrent State Machines. This model admits
coincident execution of actions rather than their interleaving, while most finite
state models assume just the interleaved executions. Also, other known forms of
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reduction (e.g. slicing and abstraction [9-11]) make the use of specific properties
of programs and can not be applied directly to more abstract CSM models.

In this paper we briefly describe three techniques used in a COSMA-style
methodology of system verification. First, we will analyze the system behavior
step-by-step, using so-called multi-phase reduction [12,13] which exploits some
compositional features of the CSM model [14]. As a result, the system which (as
naively estimated) may have as much as 4*10' states is finally reduced to a
model of 323 states and 1406 edges, easily representable and algorithmically
checkable in a split second. Then, as some properties proved to be evaluated to
false, we illustrate how the counterexample can be obtained and analyzed.
Finally, using timed version of the model, we present how real time
dependencies may be analyzed.

2. Two-phase procedure of obtaining the reduced reachability graph

Let us recall the basic facts about the CSM model of a pipeline, described in
more details in [1]. It consists of three complex modules and three individual
components (data source, data sink and the arbiter) common to the whole
system. Each module can be internally subdivided into six components (see also
left-hand part of Fig. 2). In total, this makes a set of 21 cooperating components.
For each of them, a separate (finite state) CSM model has been developed,
aimed at specifying its behavior as well as the communication to/from its
communication partners. The goal was to obtain the large system’s behavioral
model or a graph of reachable system states, containing all the reachable states
and possible execution paths among them. Then, some temporal formulas
representing desirable behavioral properties of the system have been evaluated
(true or false).

In [1] the emphasis was put on the specification of components and temporal
properties, while the technique of obtaining the product of all the components
was not analyzed. Now we proceed to the method of determining the system’s
behavioral model that can (to an extent) help to cope with problems of the graph
size. The main idea devoted to is the following. In order to obtain a system
behavioral model, one has to perform the product (&) of CSM models of system
components. This operation is associative and commutative. Associativity
supports the important compositional property. Now, if we have — for instance —
a system Z= {m, n, p} of three components, then (due to the associativity) we
can obtain the behavioral model either immediately, as a ‘flat’ product
®Z=m®n®p or in two steps: first computing the local product of some
subsystem e.g. ¥ = m ® n, then ®Z =r ® p. Meanwhile, before the second, final
product is obtained, we can apply some reduction procedure to the partial
product 7. While the associativity of the product applies to other finite state
models as well, this reduction makes the use of intrinsic features of CSM model
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itself. If machines m and n do communicate intensively with each other — it may
result in a considerable reduction of a total computational effort, necessary for
the computation of ®Z.

Below, we show how this general rule applies to our system of 21
components, briefly recalled above. We will proceed in the two steps or phases.

Generally, each phase consists in the selection of some subsystem, obtaining
its CSM product and removing the irrelevant states and edges from it. However,
one has to decide first which elements of the model are relevant ones and
therefore have to be preserved. Relevant — in this sense — are the selected output
symbols (produced by individual system components) and thus also the system
states in which these symbols are generated. Typically, among relevant symbols
are:

1. symbols that are referred to in the temporal formulas to be evaluated,

2. symbols that should be preserved for designer’s convenience, €.g. because

they make the complex behavior more readable,

3. symbols that are necessary from the viewpoint of the communication

among the currently reduced subsystem and remaining components’.

The former two groups of symbols are decided upon by the designer while the
latter one is determined by the specification of system components. Assume that
in our case the relevant symbols of types 1 and 2 above are the following ones:

msg 1, msg 4, doProc 1, doProc 2, doProc_3

In order to obtain the ‘phase-1" model of our example system we perform the
following procedure:

Phase-1

1. take a subsystem, consisting of the six components of module #1 (Fig. 2),

2. compute its CSM product,

3. reduce it, leaving as the relevant output symbols the following ones:

— all the output symbols (from the subsystem) which are ‘watched for’ by
the subsystem communication partners (i.e. the Arbiter, Trsm 0,
Rev 2),
— symbols from the set selected above, which are produced within module
#1 (this case: doProc_1),
Let the product reduced this way be called Subsystem 1,
4. repeat the above for modules #2 and #3 obtaining Subsystem 2 and
Subsystem_3 (respectively),
5. Substitute subsystems 1, 2, 3 in the place of just processed components.

'Note that among the ‘remaining components’ can be also the additional, auxiliary automata
(e.g. Invariant, in our case) necessary for expressing the properties under checking.
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Fig. 2. ‘Local’ product of a single module

This way we obtain the phase-1 structural model, in which subsystems 1, 2
and 3 are replaced by single automata. It is noteworthy that for Subsystem_I:

— Cartesian product of its six components has 24300 states,

— CSM product (before reduction) has 24 reachable states and 31 edges,

— after reduction, Subsystem_ 1 is a graph of 10 states and 16 edges.

For Subsystem_3, the situation is analogous. As an illustration, the reduced
CSM product of six components making Subsystem 3 (Main_3, Rcv_3, Trsm_3,
Proc 3, InpQ 3, OutQ 3) is shown in Fig. 3. At no surprise, it has 10 states and
16 edges, the same as Subsystem_ 1. For Subsystem 2 (not shown), there are as
few as 7 states and 12 edges.

Fig. 3. CSM model of Subsystem_3 (reduced product of six components of module #3)

Now, the analogous procedure can be applied again to the structural elements
of the reduced model, for instance:
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Phase-2

— Apply the procedure to a subsystem consisting of Subsystem 1 and
Trsm_0, preserving all the output symbols which are ‘watched for’ by the
communication partners (i.e. Arbiter and Subsystem 2) and symbols
needed for temporal formulas to be evaluated (this case: doProc_1 and
msg_1);

— and to a subsystem consisting of Subsystem 3 and Rcv 4, preserving
‘watched for’ symbols (i.e. Arbiter and Subsystem 2) and symbols for
model checking (this case: doProc_3 and msg 4);

— finally substitute Syst I Trsm 0 and Syst 3 Rcv 4 in the place of just
processed components.

This way we obtain the phase-2 structural model as in Fig. 4. Notice that the
phase-2 system now consists of four components (instead of 21 components of
phase-0 structural model), each of significantly reduced size. This ‘downsizing’
the model can be continued, but each time the reduction is performed certain
conditions have to be met [12] so that the reduction is not necessarily
guaranteed. Nevertheless, in practice the degree of reduction can be substantial.

Let the CSM product of the system from Fig. 4 be called New_ System and
serve as the new behavioral model in which the temporal requirements are
evaluated. New System, obtained again with the COSMA Product Engine, has
323 states and 1406 edges and is expected to preserve at least these functional
properties of the original, flat version which can be expressed in terms of
symbols msg 1, msg 4, doProc_1, doProc_2, doProc 3.

others
. <+—
Arbiter
\;' mE
47 Y
msg_1 Y /// \\\\\ msg_4
doProc_1T A 4 TdoProc_Z \/l vi [doProc_3 A
| | = !
Syst_ 1_Trsm_0 Subsystem_2 Syst_ 3 Rcv_4
Prot 2 Prot_3

Fig. 4. Phase-2 structural model of the system

3. Verification of the reduced model

To sum up, now we have two behavioral models of the same example system:

— Flat-product (CSM product of 21 components, obtained as described in
[1]) which had 8284 states and 34711 edges,

— New_System, obtained in the above two-phase reduction procedure, with
323 states, 1406 edges.
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Both models have been verified in the COSMA environment. As in [1], an
additional automaton /nvariant was determined to conveniently specify the
verified properties. The checked properties were the following:

— Safety 1, saying — informally — that the number of messages within the
pipeline never exceeds its capacity and the number of messages leaving the
pipeline never exceeds the number of messages entering it,

— Liveness 1, saying — informally — that for any system state it is possible
that the pipeline eventually would get empty,

— Liveness 2, saying — informally — that for any system state it is possible
that the pipeline eventually would get full.

Experiments have been performed on PC computer with 800MHz processor

and 512 MB RAM. The results are summarized in Table 1.

Table 1. Summary of experiments

Flat model Reduced model
Result Evaluation time Result Evaluation time
Safety 1 true 17s True <1ms
Liveness 1 false 54s False <1ms
Liveness 2 false 4 min 40 s False 60 ms

Notice that both formulas referring to the liveness have been evaluated false
in both (flat and reduced) models. This negative result means that the system
may enter such a state (states) that — from this state on — the pipeline is never
empty again (i.e. it never terminates the processing of messages) or is never able
to process three messages at once, which it was designed for.

The differences in evaluation times are really noteworthy: in all cases the
ratio of 10°-10* in favor of reduced model was achieved, even though in terms of
state space size the reduced model is only approximately 25 times less than the
flat one.

Finally, the model verification can be summarized as follows;

— The system itself performs wrong: there must be a synchronization bug in
the specification of components. This calls for the analysis of a
counterexample.

— The reduced model well preserves the relevant properties of the primary,
flat one. Indeed, each case the same temporal formula was evaluated the
same way (frue or false) in both models.

— The multi-phase reduction method provides a significant gain in the
evaluation time, even greater than the savings in the state space itself.

— The advantages of the evaluation algorithm used in the COSMA tool have
been also confirmed. The algorithm terminates the evaluation as soon as
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the result (true, false) is certainly determined. It is why the evaluation
times of rather similar formulas (1) and (2) differ by a few dozen of times.

4. Analysis of a counterexample

In the case of negative evaluation, the TempoRG checker [15-17] produces a
counterexample. Often, it is a path (a sequence of states) in the reachability
graph that leads to the state where it was decided that the temporal formula is to
be certainly evaluated false. In the case of more complex temporal formulas
involving several operators, the counterexample can be a tree [15], showing
which particular part of the formula (a sub-formula) is responsible for the
negative result. Tracing the consecutive states along the counterexample, the
designer is able to identify the synchronization bug.

However, in the case of reduced models, the model states can be unreadable.
As a result of reduction, some states are eliminated, the remaining ones are
usually renamed etc., so that the analysis of counterexample should be based on
the sequences of symbols (events) produced by the system instead of on
sequences of states.

The evaluation of both formulas representing the liveness condition yields the
same counterexample, presented in Fig. 5. The counterexample itself pretends to
be a CSM, in order to enable the use of animation feature of COSMA tool.
Using it, one can trace the states of individual components (and their change)
corresponding to consecutive states of an counterexample. Also, some additional
symbols (not used in ‘regular’ CSM) are introduced as first elements of states’
output field. @ marks the starting state of the formula (in this case it is the
system initial state) while F and G stand for the operators of sub-formulas
(G stands for AG and F stands for AF).

sO:Hle:m2:m2in2:Cos s1:Busy:m4:m2:n2:Cos 1:Busy:m5:m2:n2:
s0:Busy:m3:m2:n2:Cos S 4 s1:Busy:mb:m2:n2:Cos

pause_0 regAccess_1

rdyRev_2

I['s1:Busy:m5:m2:n2:Nic

pause_0
rdyRev_2
rdyRev_3
others|

Fig. 5. Counterexample to the formula AG AF in Invariant.s3
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The counterexample is constructed as follows:

— it begins in the starting state of evaluation (the initial state in this
example),

— it contains sub-paths responsible for sub-formulas (which may produce a
tree-like counterexample),

— for four states two successors are shown: one which leads towards an
erroneous state (in which the error is possible, transition labelled with
Error), the other one which leads to a ‘proper’ state (transition labelled
with OK),

— the fifth state in an upper sequence, namely s/:Busy:m5:m2:n2:Cos is
referred to as a Trap. The rules of constructing counterexamples [24] say
that this state is a representative of so-called Ending Strongly Connected
Subgraph (ESCS) of states in which the most nested formula
(in Invariant.state; state €{s0,53}) is not satisfied. When the system falls
into one of these states, the error is inevitable (the desired state state of
linvariant is never reached).

The analysis starts with finding the last one of states (in the sequence) that
has two outgoing transitions: one labelled OK and the other labelled Error. This
state is referred to as a Checkpoint. In the example, it is
(s1:Busy:m4:m2:n2:Cos), with two successors: (sl:Busy:m5:m2:n2:Nic) as a
‘proper’ state and (sI:Busy.m5:m2:n2:Nic) as a ‘wrong’ one. This time, the
‘wrong’ state is actually the Trap itself, but often it is only the initial state of a
sequence of states which inevitably ends in a trap. Analysis of signals generated
in the triangle {Checkpoint, its ‘proper’ successor, its ‘wrong’ successor}
reveals the nature of error. We see that in the Checkpoint a request of access to
the shared resource is generated (signal req Access I), and the resource is
granted to another user (signal others is present). For this state, its ‘proper’
successor does not produce others, while in the Trap the symbol others is still
present. So, OK-labelled transition (to a ‘proper’ state) is executed only if the
signal others is withdrawn, otherwise the system chooses a transition to a
‘wrong’ state which leads to the Trap. In other words, the error is inevitable, if
the request (req Access 1) is issued while other users do use the shared
resource.

Actually, in the system the two-state dead-end subgraph (causing a livelock
of the whole system) can be found. The system performs incorrectly because
reqAccess 1 1is not stored. Recall that in the CSM framework no implicit
buffering of events is assumed: this should be provided by the model itself, e.g.
by an additional (e.g. two-state) buffering component or by a simple
modification of Proc_I. The same conclusion refers to the third module which
accesses the shared resource as well. Both modules (#1 and #3) have been easily
corrected and positively verified.
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Finally, we may add that the flat product of the corrected system has 8086
states, 33588 edges instead of 8284 states and 34711 edges of the (incorrect) flat
product discussed in [1]. This confirms the observation that the better the
synchronization is, the less is the behavioral model of a system.

5. Real-time dependencies

Now we may convert automata to TSCM (Timed CSM, derived from CSM as
Timed Automata [18,19]) by adding time constraints and clock resets on some
transitions in automata Proc i and control units Main_i (Fig. 2). All time
dependencies are shown as multiples of a basic time period, a tick. The
constraints in Proc i (Fig. 6) inform what is the minimal time of processing
(tim1: by the constraint on the transition outgoing from the state useshared) and
the maximal time (#im2: the constraint on self-loop of the state useshared). The
constraints are based on a clock 77 local to Proc_i. The fixed time of staying in
states in Main_i models delays in control unit. The clock is reset every time the
automaton enters useshared. The constraints guarantee that the time of using a
shared resource is finite. The constants timl i and tim2 i, timl i < tim2 i, may
be specific to subsystems 1,2 and 3. Auxiliary automaton which guarantees finite
time of using the resource by others must be modelled (instead of the external
signal others). Also, maximal time of a time period between generation of items
should be specified.

!I'stProc_1

WtForGrant UseShared

grant_1
T1:=0

Process

doProc_1

T1<tim2_1

——
1

T1>tim1_1

ReleaseMut
relShared_1

Fig. 6. Timed automaton Proc_1

Unfortunately, TCSM does mnot specify the succession relation
unambiguously. The RCSM (Region CSM automaton) may be calculated from
the product TCSM, following the rules given in [20]. Storing a timed automaton
in the RCSM form allows the verification system to compute its products with
various testing automata. For this purpose, rules for multiplication of RCSM
automata were developed [20].

Based on the RCSM state space, a testing automaton may be constructed, as
shown in Fig. 7. This automaton checks if a time period between two items on
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output of the whole system is <0,1), <1,2), <2,3) ... ticks. If we impose minimal
and maximal time on the system, states violating the limits should produce the
error signal (period </ or >4 in this case).

ticks
1] T:=0

Fig.7. Testing timed automaton

The presented verification should be completed by former tests for liveness
and safety (but in the RCSM state space), because time constraints may change
the behavior of the system and the results obtained for CSM may be no longer
valid.

6. Conclusions

The advantage of (Timed) Concurrent State Machines formalism is that in
order to understand (or even to design) the behavioral specification of a system
component one has to be familiar with only a few elementary notions: a state, a
transition, an atomic symbol, a Boolean formula, a time constraint. Generally,
the semantics of an individual CSM is not far from the conventional finite state
machines or basic UML’s state diagram. However, given a collection of such
CSM components, one can select a subsystem and obtain its product,
representing (in one, large graph) all possible subsystem’s executions or runs.
Consequently, the model of a system can be subject to formal model checking
methods and techniques. This advantage is not provided by standard
specification methods based on UML.

Moreover, as we have shown, the COSMA software environment supports
the additional functional features, like stepwise model reduction, defining
behavioral invariants, imposing time dependencies etc., as well as the means for
the analysis of counterexamples. This makes the (Timed) Concurrent State
Machines (and COSMA tool) a good candidate for a convenient framework for
preliminary specification of concurrent, reactive systems. Once verified and
corrected, such a specification can be refined, enhanced and otherwise
developed in other professional software development environments. Moreover,
if some components are to be hardware — implemented (which is often the case
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in embedded systems), the automata-like CSM specification is also close to
common forms of behavioral specification of sequential circuits.

This work has been supported by grant No.7 T 11 C 013 20 from the Polish
State Committee for Scientific Research (Komitet Badan Naukowych).
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