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Abstract 
We define some infinite subfamily of hexagonal grids with the oriented chromatic number 5. 

We present an algorithm for oriented colouring of some hexagonal planar oriented grids. The 
algorithm uses BFS spanning tree of a subgraph of the dual graph of the grid and a homomorphism 
to some tournament of order 6. In general the difference between the number of colours given by 
the algorithm and the oriented chromatic number is at most 1.  
 

1. Introduction 
We consider simple graphs and oriented digraphs. The simple graph 

G = (V,E) is the pair of sets, where the second set consists of some two element 
subsets (edges) of the first set. The digraph D = (V,A) is the pair of sets, where 
the second set consists of some pairs of elements (arcs) from the first set. We say 
that D is the oriented digraph if A does not contain opposite arcs (if A is 
antisymmetric relation on V). The oriented colouring and its relation to another 
type of colourings of graphs and digraphs is studied recently. Most of the results 
are published in [1-14]. Some important application of oriented colouring to 
study antisymmetric flows is presented in [10,11]. In this paper we study the 
oriented chromatic number for some planar and non planar grids. In particular, 
we give infinite subfamily of hexagonal grids with the oriented chromatic 
number 5. We extend a result of Fertin [4] to some family of square grids. 
Moreover, we present an algorithm for oriented colouring of hexagonal planar 
grids with some constrains. The basic notions and notations are defined below. 
The notions not defined here one can find in [3]. 

Homomorphism of the oriented digraph 1 1 1( , )D V A=  to the oriented digraph 

2 2 2( , )D V A=  is defined as mapping φ from the vertex set of D1 to the vertex set 
of D2 satisfying the condition: 

if (x, y) is an arc in D1, then (φ (x), φ (y)) is an arc in D2. 
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Halina Bielak  6 

Two oriented digraphs 1 1 1( , )D V A=  and 2 2 2( , )D V A=  are isomorphic if there 
exists a bijective mapping φ from V1 to V2 satisfying the following condition: 
 ( )( ) ( ) ( )( )( )1, 1 2, ,a b V a b A a b Aϕ ϕ∈∀ ∈ ⇔ ∈ . 

The proper vertex colouring of the graph G = (V,E) is a mapping :c V N→  
such that the adjacent vertices u,v∈V have different colours, i.e., { , }u v E∈ ⇒  

( ) ( )c u c v≠ . 
Given the positive integer k, if there exists a proper vertex colouring of G 

with k colours, then we say that G is k-colourable. The minimum number k, such 
that the graph G is k-colourable is called the chromatic number of G and denoted 
by χ(G). 

The oriented colouring is a colouring c of the vertex set of the oriented 
digraph ( ( ), ( ))G V G A G=

G G G
 satisfying the following conditions: 

– if ( , ) ( )u v A G∈
G

, then ( ) ( )c u c v≠ , 
– for any pair of arcs ( , ),( , ) ( )u v x y A G∈

G
, if c(u)=c(y) then ( ) ( )c x c v≠ . 

The oriented chromatic number ( )Gχ
GG  of the oriented digraph G

G
 is the 

minimum number of colours over all oriented colourings of G
G

. 
Let GO  be the family of all possible orientations of the simple graph G. The 

oriented chromatic number ( )GχG  of the simple graph G is defined as the 
maximum oriented chromatic number over all possible orientations of G, i.e., 
 ( ) ( ){ }max | GG G G Oχ χ= ∈

G GG G  

Evidently, the oriented digraph D1 can be coloured by k colours if and only if 
there exists a homomorphism φ from D1 to an oriented digraph D2 of order k. So 
the problem of finding the oriented chromatic number of  an oriented digraph  

1 1 1( , )D V A=  is the problem of finding an oriented digraph D2 = (V2,A2) of 
minimum order, such that there exists a homomorphism ϕ: D1→ D2. We say, 
that D1 is coloured by a homomorphism to D2. We say that D1 is D2 – 
colourable, if and only if there exists a homomorphism from D1 to D2. The 
vertices of D2 are called the colours. The following digraphs are very useful for 
studying the oriented colourings of graphs. Two of them are presented in 
Figure 1. 

– T5 is the digraph with the vertex set V = {0, 1,...,4} and the arc set 
 ( )( ){ }, mod5 | , 1,2A x x k x V k= + ∈ = ; 

– T6 is the digraph with the vertex set V = {0, 1,...,5} and the arc set  

 
( )( ){ } ( )( ){ }

( )( ){ }
, 1 mod6 : , mod6 : 2 | , 2,3

, 4 mod6 | 2 | ;

A x x x V x x k x V x k

x x x V x

= + ∈ ∪ + ∈ ∧ = ∪

+ ∈ ∧ ¬
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The oriented chromatic number of some grids 7 

– T7 is the digraph with the vertex set V = {0, 1,...,6} and the arc set  
 ( )( ){ }, mod7 | ,  1,2,4A x x k x V k= + ∈ = ; 

– T11 is the digraph with the vertex set V = {0, 1,...,10} and the arc set  
 ( )( ){ }, mod11 | , 1,3,4,5,9A x x k x V k= + ∈ = . 
 

 
Fig. 1. The orientation T5 of the complete graph of order 5 and the orientation  

T6 of the complete graph of order 6 
 
The average degree ad(H) of the graph H is defined as follows  

 ( ) ( )
( )

2 | |
| |

E H
ad H

V H
= . 

The maximum average degree mad(G) of the graph G is defined as maximum 
of average degrees ad(H) over all subgraphs H of the graph G, i.e. 

( ) max{ ( ) : }mad H ad H H G= ⊆ . 
The girth g(G) of the graph G is the order of the shortest cycle in G. 
The following theorem presents some relation between the oriented chromatic 

number and the maximum average degree. 
 
Theorem 1. (Borodin [2]).  

1. For any graph G with 7( ) , ( ) 5
3

mad G Gχ< ≤
G . 

2. For any graph G with 11( )  and ( ) 5, ( ) 7
4

mad G g G Gχ< ≥ ≤
G . 

3. For any graph G with ( ) 3, ( ) 11mad G Gχ< ≤
G . 

4. For any graph G with 10( ) , ( ) 19
3

mad G Gχ< ≤
G . 

 
2. The oriented colourings of square grids 

In this section we give a short survey of known results for planar graphs, in 
particular for planar square grids. Moreover, we extend some of them for other 
square grids. The following theorems show some upper bounds for the oriented 
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Halina Bielak  8 

chromatic number of planar graphs with respect to the maximum degree and the 
girth of the graph.  
 
Theorem 2. (Raspaud and Sopena [9]). Any oriented planar digraph has an 
oriented colouring with at most 5⋅24 colours. 
Theorem 3. (Kostochka [6]). If G = (V,E) is a graph of maximum degree k, then  
 2( ) 2 2kG kχ ≤ ⋅

G . 
Theorem 4. (Borodin [2]). Let G be a simple planar graph with the girth g(G). 

1) If g(G) > 13, then ( ) 5Gχ ≤
G . 

2) If g(G) > 7, then ( ) 7Gχ ≤
G . 

3) If g(G) > 5, then ( ) 11Gχ ≤
G . 

4) If g(G) > 4, then ( ) 19Gχ ≤
G  

 
The special subfamily of planar square grids are two-dimensional grids. The 

two-dimensional grid G(m, n) is the cartesian product of two paths of orders m 
and n, respectively, i.e., mG(m,n) P nP= ×  (see Figure 2 for some examples).  

The family of all G(m,n), where m, n are positive integers we denote by G2. 
The oriented chromatic number for a family F of graphs is defined as follows:  
 ( ) ( ){ }max |F G G Fχ χ= ∈

G G . 
Some big two-dimensional grids can be optimally coloured by digraphs T11, 

T7 or T6. The upper bound for the oriented chromatic number of G(m,n) in 
general case is given by the respective homomorphism to T11. The nice property 
of T11 cited below is very useful to study the upper bound. 
 

 
Fig. 2. Two two-dimensional grids G(2,5) and G(3,5). The examples of fat tree and fat fat tree 
 

Proposition 5. (Borodin, et al. [2]). For any two vertices u, v of T11 there are at 
least two different paths of length 2 with an arbitrary orientation, joining the 
vertices u and v. 
 
Theorem 6. (Fertin, et al. [4]). Let m, n be integers and let G2 be the family of 
two- dimensional grids G(m, n), then 28 ( ) 11Gχ≤ ≤

G . 
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The oriented chromatic number of some grids 9 

The colouring of G(2,n) by T6 is discovered by Fertin, Raspaud and 
Roychowdhury [4]. For this narrow two-dimensional grid they obtained the 
result presented below. 
Proposition 7. (Fertin, et al. [4]). For any n>3, ( )( )2, 6G nχ =

G  and 

( )( )2,2 4Gχ =
G , ( )( )2,3 5Gχ =

G . 
The following property of T6 is very useful to study narrow two-dimensional 

grids. This property is very interesting for the oriented colouring of other grids 
studied in this paper, as well. 
Proposition 8. For any two vertices u and v of T6 there exists a walk 
P=(u,u',v',v) of length 3 with an arbitrary orientation of three arcs.   
Proof. Without loss of generality we can consider two cases for u, namely u = 0 
and u = 1.  � 
 

Recently, Szepietowski and Targan [14] discovered the optimal oriented 
colouring of G(3, n) and G(4,n) by T7. The digraph T7 has some number of 
automorphisms, for example: h(x) = (x + n) mod 7, for any integer n; h(x) = (2x) 
mod 7, h(x) = (4x) mod 7, h(x) = (7-x) mod 7, where x is a vertex of T7. The last 
automorphism reverses any arc of T7, i.e., it maps any arc (u,v) into the arc (v,u), 
where u, v are any different vertices of T7.  
Proposition 9. (Szepietowski and Targan [14]). There exists an automorphism 
of T7 mapping any arc (u, v) of T7 into the arc (0, 1). 
Proposition 10. (Szepietowski and Targan [14]). Let G be an oriented two-
dimensional grid and let (u,v) be an arc of G. Then the following theorems are 
equivalent: 

1) there exists a homomorphism h from G to T7, 
2) there exists a homomorphism h from G to T7 so that h(u) =  and h(v) = 1. 

Proposition 11. (Fertin, et al. [4]). For any orientation of the graph 3E  and any 
colouring of the vertices x, y, z with colours from the set {0,1,2,3,4,5,6} there 
exists a colouring of the vertices x', y', z' preserving the homomorphism to T7, 
where the graph E3 is presented in Figure 3. 
Proposition 12. (Szepietowski and Targan [14]). For 3,4,5,6,n = , 

( )( )3, 6G nχ =
G  and for any n>6, ( )( )3, 7G nχ =

G . For any G(4,n) there exist a 
homomorphism to T7. 
 

 
Fig. 3. The graph E3 
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Halina Bielak  10 

The above facts are very useful to study subgraphs of two-dimensional grids, 
called fat trees and fat fat trees and defined by Fertin, Raspaud and 
Roychowdhury in [4]. They glue grids G(2,n) into fat trees, and glue grids 
G(3,n) into fat fat trees with the restriction to the subgraphs of G(n,m) (see 
Figure 2 for the examples). The fat trees can be coloured in the same way as 
G(2,n). The fat fat trees can be coloured in the same way as G(3,n).  

The oriented chromatic number of the family of fat trees and fat fat trees are 
cited below. 
Proposition 13. (Fertin, et al. [4]). Let FT be the family of fat trees. Then 

( ) 6TFχ =
G . Let FFT be the family of fat fat trees. Then ( ) 7TFFχ =

G . 
 

We extend the above result to other square grids. Namely, let S be the family 
of graphs constructed from the cycle 4 (2,2)C G=  by successive edge gluing of 
a new copy of C4. The family S contains the family of fat trees. Evidently each 
graph of the family is planar. Let FS be the family of graphs defined as follows. 
The smallest graph of the family FS is G(2,3). For n>5, the graph H of order 
n+3 belongs to FS if it can be constructed from a graph G of order n belonging 
to FS by gluing the vertices x,y,z of a new copy of E3 to the consecutive vertices 
of a path P3 in G. No other graph belongs to FS. The family FS contains all fat 
fat trees and some non planar square grids. The examples of graphs in the 
families are presented in Figures 2 and 4. The graphs presented in Figure 4 are 
neither fat tree nor fat fat tree. 
 

 
Fig. 4. The square grids of S and FS 

 
Proposition 14. Let S and FS be the families defined above. Then ( ) 6Sχ =

G  and 
( ) 7FSχ =
G . 

Proof. Immediately by Propositions 8 and 11. The graphs of the family S we 
colour by T6, and the graphs of the family FS we colour by T7. � 
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The oriented chromatic number of some grids 11 

3. Hexagonal grids 
In this section we give some new results for oriented colouring of planar 

hexagonal grids. In particular we study the grids for which there exists a planar 
imbedding with at most one region with the boundary greater than 6 and such 
that any two hexagons have at most one common edge. The linear hexagonal 
grid Hn = H1,n is defined recursively as follows. H1,1 = C6. For n>1, H1,n is 
constructed from H1,n-1 by edge gluing of the new C6 to the last right edge of 
H1,n-1. If starting from C6 we successively glue the new C6 to an arbitrary edge of 
the hexagonal grid with n-1 hexagons then we obtain hexagonal tree with n 
hexagons. The 2-linear hexagonal grid H2,n is a particular case of fat hexagonal 
tree and is defined recursively as follows. H2,1 = H1,2. For n>1, H2,n is 
constructed from H2,n-1 by gluing of the new H1,2 to the last right path P4  
of H2,n-1. The examples of the linear hexagonal grid and the 2- linear hexagonal 
grid are presented in Figure 5. The last right edge is denoted by x, y in Figure 
5(a), and the last right path P4 is denoted by u, w, x, y in Figure 5(b). 
 

 
Fig. 5. The planar imbedding of H1,5 and H2,5. The numbers inside the hexagons are their labels. 

The optimal oriented colouring is constructed by extending the partial colouring by 
homomorphism to T5 for successive hexagons according to increasing labels 

 
First we prove the following lemma. 

Lemma 15. Let t be an integer, 4<t. For any orientation of the path 
0 1 2 3 1( , , , , , )t tP x x x x x −= …  joining the vertices x0 and xt-1, and for any colouring 

of x0 and xt-1 by colours of the set {0,1,2,3,4} there exists a colouring of 
1 2 3 2, , , , tx x x x −…  preserving the homomorphism to T5. 

Proof. (By induction on t). First we show that the theorem is true for t = 5. By 
symmetry of T5 we can set the colour 0 for x0, i.e. 0( ) 0c x =  Moreover, by the 
symmetry, it is sufficient to consider the orientations of P5 presented in Figure 6. 
The respective colouring of the inside vertices of P5 by T5 are listed in the table. 
Suppose that the theorem is true for each positive integer 4<n<t. By taking the 
vertex xt-2 with the colour 2 1( ) ( ( ) 1)mod5t tc x c x− −= +  and c(xt-2) = (c(xt-2) –
 1)mod5, we extend the result from Pt-1 to Pt.  � 
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Fig. 6. The orientations of the path P5 and the oriented colourings by T5.  

We assume that c(x0) = 0 
 
We prove the following result. 

Theorem 16. Let n be a positive integer. For any n>3 we have ( ) 5nHχ =
G . 

Proof. Let 4O  be the family of all orientations of the simple graph K4. We 
show that the Figure 7 presents the oriented hexagonal grid 0

4H
G

 without any 
homomorphism to any digraph of the family O4. Suppose that 0

4( ) 4Hχ ≤
GG . 

Without loss of the generality we set c(q) = 0, c(h) = 1, c(p) = 2. Then 
( ) {0,3}c r ∈ . Suppose that c(r) = 0. Then c(s) = 3, c(f) = c(k) = 2 and 

( ) {0,1,3}c x ∈ . Note that ( ) 0c x ≠ , else c(y)>3 and we get a contradiction. If 
c(x) = 3 then c(y) = 0 and c(g)>3, a contradiction. If c(x) = 1 then c(a)>3, a 
contradiction. Thus c(r) = 3. Hence c(i) = 1, c(s) = 0, c(k) = 2 and c(j) = 1. Thus 
c(w)>3, a contradiction. 

 
Fig. 7. The orientation 0

4H
G

 of the linear hexagonal grid H1,4 
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The oriented chromatic number of some grids 13 

So ( ) 4nHχ >
G , for n>3. By Lemma 15, note that for any orientation of 

H1 = H1,1 = C6 there exists a homomorphism to T5. So 1( ) 5Hχ ≤
G . Thus, by 

induction on the number of hexagons and by Lemma 15 for t = 6, we get 
( ) 5nHχ ≤
G  for each positive integer n. The proof is done.  � 

 
The hexagonal tree is obtained by edge gluing of linear hexagonal grids. The 

fat hexagonal tree is obtained by a P4-gluing of 2-linear hexagonal grids. The 
examples are presented in Figure 8. More precisely, we construct the family of 
fat hexagonal trees recursively. We assume H1,2 as the smallest fat hexagonal 
tree. The  fat hexagonal tree H of order n, where n>6 and 6|n, we obtain from a 
fat hexagonal tree F of order n-6 by gluing the graph B3 presented in Figure 9 to 
a path (u,w,x,y) of the graph F. The family contains non planar hexagonal grids. 
The oriented chromatic number for these families is presented below.  
Theorem 17. Let HT  be the family of all hexagonal trees. Then ( ) 5HTχ =

G . 
Proof. Immediately by Lemma 15 with t = 6.  � 
Theorem 18. Let FHT  be the family of all fat hexagonal trees. Then 

( ) 5FHTχ =
G . 

Proof. Let H be a graph of the family FHT  and H
G

be any orientation of H. We 
apply Lemma 15 with t = 6 and t = 5. First we colour the smallest oriented grid 
of the family by T5. Then we extend the oriented colouring to the oriented 
colouring of H

G
 by the colouring of the sequence of respective orientations of 

subgraphs isomorphic to B3 taking them accordingly to the recursive 
construction of H. First, we colour by T5 the inside vertices of the path 
(u,a,b,c,x) and then we colour the inside vertices of the path (c,d,e,f,y).  � 
 

The example for the respective order for the extending of the oriented 
colouring is presented in Figure 8. 
 

 
Fig. 8. The example of hexagonal tree and fat hexagonal tree. The numbers inside the hexagons are 

their labels. The optimal oriented colouring is constructed by extending the partial colouring  
by homomorphism to T5 for successive hexagons according to the increasing labels 
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Fig. 9. The graph B3. The vertices u, w, x and y are properly precoloured, i.e., the path 

P4 = (u,w,x,y) is contained in F. The vertices a, b, c, d, e and f are coloured by T5 as follows:  
first we take the path (u,a,b,c,x) to extend the colouring to the vertices a, b, c and then  

we take the path (c,d,e,f,y) to extend the colouring to the vertices d, e, f 
 
To study other hexagonal grids we need the following lemma. 

Lemma 19. Let t be an integer, 3<t. For any orientation of the path 
0 1 2 3 1( , , , , , )t tP x x x x x −= …  joining the vertices x0 and xt-1, and for any colouring 

of x0 and xt-1 by colours of the set {0,1,2,3,4,5} there exists a colouring of 
1 2 3 2, , , , tx x x x −…  preserving the homomorphism to T6. 

Proof. (By induction on t). Immediately by Proposition 8 we get the result for 
t = 4. Suppose that the theorem is true for each positive integer 3<n<t. By taking 
the vertex xt-2 with the colour 2 1( ) ( ( ) 1) mod 6t tc x c x− −= +  and 2( )tc x − =  

1( ( ) 1)mod6tc x − −  we extend the result from Pt-1 to Pt.  � 
 

Now we prove the following result. 
Theorem 20. Let H be a 2-connected planar hexagonal grid of maximum degree 
at most 3 with n, (n>3) hexagons such that any two hexagons have at most one 
common edge and there exists planar imbedding of H with at most one non 
hexagonal region. Then 5 ( ) 6Hχ≤ ≤

G . 
Proof. Let H be a hexagonal planar grid with n hexagons satisfying the 
assumption of the theorem. By Theorem 16 we have 5 ( )Hχ≤

G . The upper bound 
we get by the oriented colouring of H by T6 according to the algorithm OHPC 
presented below. The algorithm is based on Lemma 19. Let R be the graph with 
the vertices representing the hexagons of H. Two vertices of R are adjacent if 
and only if the respective hexagons have a common edge (unique one) in the 
grid H. Let H

G
 be any orientation of H. 

 
The algorithm OHPC (oriented colouring of oriented hexagonal planar grid 

by T6): 
Imbed the grid H into the plane according to the assumption of the theorem. 
Let T be a spanning BFS tree for R. {By BFS we mean the breadth first 

search.} 
Let 1 2 3 4, , , ,..., nx x x x x  be the order of vertices of T obtained by BFS 

algorithm. 
FOR i =1(1)n DO 
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The oriented chromatic number of some grids 15 

 Take the noncoloured vertices of H
G

 from the boundary of the hexagon  
represented by xi. The vertices create either an oriented path of order q, 
where 1<q<5 (i.e., the vertices are the inside vertices of a path Pq+2), or an 
oriented cycle of order 6 (the last case is for the root of T). Denote the 
oriented subgraph by S. 

For each vertex v of S find the respective homomorphism preserving 
colouring by T6. 

Note that the partial oriented colouring can be extended by Lemma 19. � 
 

The example of the grid satisfying the conditions of Theorem 20 is presented 
in Figure 10. 
 

 
Fig. 10. The grid H with the respective BFS spanning tree T constructed in the increasing  

order of labels inside of hexagons 
 
The algorithm OHPC presented in the proof of Theorem 20 can be applied to 

any oriented colouring of planar hexagonal grid H with the connectivity at most 
1 such that each block of the grid satisfies the assumption of the theorem, as 
well. The block is the maximal 2-connected component of the graph. In the case 
we can use a spanning BFS forest F for R instead of a spanning BFS tree T and 
we colour the oriented grid according to some special order of trees of the forest. 
Namely, first we create a block representation tree B of the grid. The block tree 
has the blocks of H as vertices. Two vertices of B are adjacent iff the respective 
blocks have a common vertex. Then we number the vertices of B by BFS. We 
take the increasing order of the vertices of B as the order of blocks of H and we 
consider the blocks successively according to this order. For the first block we 
can create BFS tree with the root in the arbitrary hexagon. For each other block 
we create the respective BFS tree with the root representing the unique hexagon 
with precoloured vertex. The order of BFS trees is induced by the order of 
vertices in B. We apply the algorithm OHPC for each consecutive block. 
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Halina Bielak  16 

If two hexagons of a planar grid H have at least two common edges or there 
exists no planar imbedding of H with at most one not hexagonal region, then the 
algorithm OHPC cannot produce any oriented colouring by T6. The example of 
critical grid F is presented in Figure 11. Note that if after 9th step the algorithm 
gives c(u) = c(y), then the colouring cannot be extended to the vertex x. It 
follows by too small length of the path P = (u,x,y). A critical orientation of the 
grid and the colouring by T6 after 9th step of the algorithm is presented in Figure 
12.  

Similarly, the grid obtained from F by deleting of the edges {a,c} and {c,b} is 
critical for the OHPC algorithm. In fact, there exists an infinite family of the 
critical graphs. 
 

 
Fig. 11. The planar grid F without colouring by T6 according to the algorithm OHPC. The 

respective BFS spanning tree T is constructed in the increasing order of labels inside hexagons 
 

 
Fig. 12. A critical orientation F

G
of the grid F and the colouring by T6 after 9th step  

of the algorithm. If c(u) = 4 then the orientation of the path P = (u, x, y) leads  
to a non proper colouring of F

G
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Conlusions 
Note that 1,( ) 7 3nmad H >  and 2,( ) 11 4nmad H > . So we cannot use Theorem 

1 for the proof of Theorems 16-18. There is a question, what is the smallest grid 
satisfying the conditions of Theorem 20 with oriented chromatic number 6, (if 
such exists)? We conclude with the following open question for two-
dimensional grids. What are the minimum positive integers m and n such that 

( )( ),G m n kχ =
G  for any k (5<k<12)? 
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