

Annales UMCS Informatica AI 6 (2007) 137-148
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

An MPI-based parallel code for high performance
3-D particle-in-cell ion source plasma simulation

Marcin Turek*1, Marcin Brzuszek2, Juliusz Sielanko2

1Institute of Physics, Maria Curie Sklodowska University,

pl. Marii Curie-Sk odowskiej 1, 20-031 Lublin, Poland
2Institute of Computer Science, Maria Curie Sklodowska University,

pl. Marii Curie-Sk odowskiej 1, 20-031 Lublin, Poland

Abstract
The paper presents parallel version of TRQR code, intended for ion source plasma simulation.

The code is written using particle decomposition approach, and enables plasma potential, charge
density, ion extraction current, etc. calculations. Parallelisation was done using widely accepted
MPI platform. Additionally, the code has been rewritten and optimised in order to achieve better
efficiency. The strong- and soft-scaling properties of the parallel code are shown (tests were done
using SMP machine), as well as some results of physical meaning. The code in its present form
allows calculation involving 5 108 pseudo-ions at reasonable wall-clock time (circa 15 hours),
which opens the gate for realistic physical conditions plasma calculations.

1. Introduction
Numerical simulation is a powerful tool that helps understand physical

phenomena and enables introducing new technologies for industry and science
applications. An advent of large scale supercomputers gives opportunity to solve
complex problems but requires continuous development of programming
techniques, including code optimization and parallelization, which enables
effective usage of processing power.

Plasma ion sources are widely used in many fields of physics. One of them is
the concept of neutral beam injection (NBI) heating system for thermonuclear
reactors like tokamaks and stellarators [1]. NBI heating systems require the
intensive ion beams of well defined parameters. Very high neutralization
efficiency, the negative ion beams are a promising candidate for this purpose
(also in the ITER project). Negative ion beam extraction from plasma sources is
quite different compared to a similar problem in the case of positive ion. The

*Corresponding author: e-mail address: mturek@kft.umcs.lublin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

Marcin Turek, Marcin Brzuszek … 138

understanding and modelling of the transport properties of negative ions is very
important, but also a rather difficult issue, for which the TRQR code is
developed [2]. Plasma simulation based on the particle-in-cell (PIC) method [3]
requires following trajectories of a huge number (typically up to 109) of
computational particles (pseudo-particles, macro-particles). In the case of
several kinds of calculations (e.g. the influence of magnetic field on ion beam
extraction) the simulation must last long enough so the steady state conditions
are established (tens of thousands of simulation time steps). Additionally, time
step and cell size have to be adjusted to physical parameters describing plasma –
they decrease fast with plasma concentration. All these factors make the realistic
plasma simulations great challenge for programmers as well as opportunity to
test solutions in high performance computing (new techniques in parallel
programming [4]; using multi-processor machines – vector, SMP machines or
clusters; code optimization [5]).

The particle decomposition approach has been used while writing parallel
version of TRQR code. The code was rewritten and optimized. As a
parallelization tool widely accepted MPI platform has been used. The paper
presents also results of basic efficiency benchmarks as well as exemplary results
of large scale simulations.

2. Numerical model

The TRQR code bases on the Particle-In-Cell (PIC) method for computing
the trajectories of charged particles in the electromagnetic field. The main
feature of the PIC method is using computational particles (macro-particles,
pseudo-particles). Each of them represents a large number (103-109) of real
particles (ions or electrons) moving the same way. Macro-particle follows
trajectory that is a solution of single-particle equations of motion – at this stage
it behaves like a real particle, but is assigned multiple charge when charge
density calculations are in progress. Macro-particle is assumed to have finite size
and spatial shape – the shape determines the way the macro-particle charge is
assigned to spatial grid points, which is the crucial point of the PIC method.
There is a variety of PIC method variations depending on how macro-particle
shape function is chosen. The simplest one is the nearest grid point scheme
(NGP) when the whole macro-particle charge is assigned to only one (nearest to
the particle position) grid point. The NGP algorithm is very fast, and easy to
implement [6]. In the case of more complex shapes (so called Cloud In-Cell
methods) charge is distributed among a larger number of grid points using
weighting coefficient depending on particle shape function [3]. The ‘smearing’
of macro-particle charge may involve a large number of near grid points (27 or
even more). Such approach yields smoother charge distribution, reduces

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

An MPI-based parallel code for high performance … 139

oscillation I plasma potential profiles, but costs more CPU time [6,7]. It should
be mentioned that the code stores charge densities arrays for each ‘species’ of
particles, as well as total charge density.

Having the total charge density),,(zyx calculated, the plasma potential is
obtained by solving the Poisson equation:

0

, ,
, ,

x y z
V x y z ,

where 0 is the dielectric constant. The Poisson equation is solved using the
optimized finite-difference successive over-relaxation (SOR) method [3].
Electrodes’ and plasma chamber potentials are set at the primary stage of
simulation.

3. Parallelisation of TRQR code
The TRQR code is written in widely accepted in scientific community

FORTRAN 77 language. The code consists of following files:
– The ‘skeleton’ main program contained in the ‘TRQR_PLAZMA.f’
– Main subroutine library (file ‘trqr_sub.f’, connected with the main code via

INCLUDE command, as all mentioned below files)
– Header file ‘wstep_dat.f’ – containing variables and constants declarations

and initialisations
– General data file ‘gen_dat_PLAZMA.txt’ with the most important

parameters describing simulation (plasma density, number of pseudo-
particles, time of simulation etc)

– Data file for CROSS subroutine (checking if the particle hit the electrode
or wall) ‘cross_PLAZMA.txt’

– Particle ‘creation’ area data file ‘source_PLASMA_dat.txt’
– File ‘pre_calc.f’ containing initial calculation subroutines (pseudo-particle

charges, charge/mass ratios, coefficients for SOR Poisson equation solver
subroutine etc.)

– An optional file ‘zapis.f’ containing trajectory print-out subroutine
The code has a modular structure. The user may add or remove some features

by commenting or adding calls of subroutines from the ‘trqr_sub.f’ (or any other
‘included’ file) in appropriate places of the main program.

The partitioning stage of a parallel code design is intended to expose
opportunities for parallel execution [8]. There are three main approaches of
parallelising the PIC code. One of them is so-called ‘domain decomposition’.
The simulation area is divided into many sub-domains, assigned to different
CPUs. ‘Neighbouring’ CPUs communicate in order to interchange information
about the particles that entered or exited their areas. The communication
algorithms may be very complex and hard to be implemented into the existing

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

Marcin Turek, Marcin Brzuszek … 140

code, especially as huge as TRQR (developed over many years). The advantage
of such strategy is relatively small memory consumption. On the other hand, the
number of subdomains scales with the number of processors, so a) their spatial
extent in the direction of parallelization becomes smaller and smaller b) the
particle communication is increased.

The second strategy is to employ ‘particle decomposition’ scheme. Every
CPU has full information about simulation area, but only a subset of
computational particles is assigned to single CPU. No ‘particle communication’
is needed. The simulation on every CPU follows almost independently. The one
exception is potential calculation – this has to be done by one (say master) CPU.
The contributions to charge density from all CPUs have to be summed and used
for potential calculations. Then calculated potential is to be distributed among all
CPUs. Great advantage of this approach is even load balancing. However, high
memory consumption is caused by the fact that a lot of data (charge density
distributions) have to be stored separately for each processor. Moreover, a
relatively large average number of particles per cell is needed.

The third approach, called ‘domain cloning’ is the most general one and
contains previous techniques as limiting cases. Multiple copies of simulation
domain are made, particle communication is necessary only between
neighbouring subdomains in one clone. Charge distribution data are summed
over all clones. The domain cloning concept offers the opportunity for
optimising the scaling property of advanced PIC codes such as the TORB code
[4].

The parallelisation of TRQR was made using the particle decomposition
technique, mostly due to the fact that this approach is relatively easy to
implement in the case of large existing codes. In order to enable code
transformation to the parallel version, TRQR was rewritten to a more clear form:

– Many obsolete features have been removed.
– Most of loops have been ‘hidden’ in subroutines.
– Branching instructions (GO TO, arithmetic IF) have been removed to

improve performance and make the code clear.
– Code was given a more clear, structuralized form (many features may be

added or removed by comment sign manipulations instead of multitude of
switches and IF instructions).

The code was parallelised using the ‘particle decomposition’ approach as
mentioned before. MPI initialisation (MPI_INIT), getting the number of
available processors NUMPROC (via MPI_COMM_SIZE tool) and assigning
ranks to them (MPI_COMM_RANK) is placed in ‘wstep_dat.f’. The file
contains also such constants as: the size of particle position and velocity
matrices NCZ (approximately 10-15 % bigger than the number of particles in the
chamber NNJON); the size of spatial grid N[XX-ZZ]; over-relaxation parameter

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

An MPI-based parallel code for high performance … 141

etc. The other input file ‘gen_dat_PLAZMA.txt’ stores information about cell
size (DE[X-Z]), starting coordinates of the grid [X-Z]BSTART, limitations of
simulation area [X-Z]C[MIN-MAX], simulation time step DET as well as the
total number of main loop runs NDET, total plasma concentration GEST_CALK
(in particles/m3 units), ratios of four plasma components XMSTVR[1-4] and
their masses AMASC[1-3], and initial energies ELAB[1-4]. The ‘source_
PLAZMA_dat.txt’ provides information for particle distribution subroutines
(size of the plasma chamber and its placement). Moreover, new parameter
NSSXYZ, the number of REAL type data to be exchanged by CPUs is
introduced. After input data are read from files every process determines particle
positions and velocities (see block scheme of sequential code). Particles are
randomly ‘created’ with the uniform distribution inside the plasma chamber.
Then the initial charge density is calculated by the GEST_PL1 subroutine. Note,
that the NNJON parameter i.e the number of pseudo-ions in the chamber, fact, is
the number of pseudo-ions in the chamber governed by one CPU. That is why
the number of real ions per pseudo-ion (WSP_Q) has to be rescaled by the
number of CPUs. The ‘master’ process (of rank 0) reads information about
electrode geometry (ELE_LAG_M subroutine), then sends appropriate data
(IVE and V arrays containing information about electrodes’ shape and potential)
to all CPUs (by MPI_BCAST collective communication tool).

The simulation runs almost independently on all processors. Data describing
electromagnetic field are identical for all processes. Every CPU follows
trajectories of ‘their’ particles, checks whether they hit the electrode or chamber
wall or not, calculates contribution to charge density and sends it to the ‘master’
process. The total charge density distribution is calculated on-the-fly, by means
of ‘global sum’ operation i.e. MPI_REDUCE with MPI_SUM option. The only
non-parallel piece of the code is potential calculation – mainly because of the
fact that it requires different, domain decomposition approach [9]. The ‘master’
uses total charge density to solve the Poisson equation using the optimised
iterative SOR method. Potential data are broadcast to all processes by means of
MPI_BCAST command. Then all processes calculate electric field values, move
particles etc. (see the simplified block scheme of parallelized TRQR – Figure 1).

It should be noted, that the data output is also managed by the ‘master’
process. This is simple in the case of potential data output (PROBE, ZAPIS_
GEST) because all information about potential is available by ‘master’. On the
other hand, charge density contributions from all CPUs have to be added before
writing to file (ZAPIS_GEST). This is done by the above mentioned ‘global
sum’ mechanism. The same applies to ANUM matrices containing distributions
of particles crossing some selected planes (RESULTS subroutine).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

Marcin Turek, Marcin Brzuszek … 142

Process 4Process 3Process 2Process 1

INITIAL CALCULATIONS

RUNGE

CROSS

SORT

UZUPELN_K

GEST_PL1

POLE_E

(data input, electrodes,
initial particle positions etc.)

(new particle positions)

(check for walls etc.)

(sorting arrays)

(re-filling chamber)

(PIC charge density)

(solving Poisson equation)

(E field calculation)

INITIAL CALCULATIONS

RUNGE

CROSS

SORT

UZUPELN_K

GEST_PL1

POLE_E

INITIAL CALCULATIONS

RUNGE

CROSS

SORT

UZUPELN_K

GEST_PL1

POLE_E

INITIAL CALCULATIONS

RUNGE

CROSS

SORT

UZUPELN_K

GEST_PL1

POLE_E

. POISS_1 .POISS_1

Fig. 1. The block scheme of TRQR code (after parallelisation)

4. Performance benchmarks

After parallelising the TRQR code some basic performance benchmarks were
performed. First of them is so-called ‘strong scaling’ test. During that test the
size of the problem (in our case – the total number of particles) remains
unchanged, whilst the number of used CPUs increases. The test shows the
speed-up as a result of using many processors. It enables estimation how much
faster reasonable results could be obtained the using increased number of CPUs.
In the second test (so called ‘weak scaling’) the size of the problem increases
proportionally to the number of processors (putting it in other words, the number
of particles per CPU remains constant). The normalized speed-up gives us
information how much faster a large numerical problem is solved by many
processors compared to the time of calculations using single CPU. One should
be aware that very often solving a huge numerical task is impossible using a
single CPU machine, most often due to the lack of memory, so the single-
processor time should be considered as a theoretical concept.

The tests were performed using single 32-way node of Rechenzentrum
Garching ‘Regatta’ SMP cluster (1.3 GHz Power4 IBM p690 system running on
AIX 5.3 operating system). The executable was built with IBM XLF 9.1

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

An MPI-based parallel code for high performance … 143

compiler (with –q64 large memory area access switch, -qipa interprocedural
optimization option and –O3 optimization level). The code was running under
the POE parallel environment. It should be mentioned that benchmarks were
made during normal operation of the cluster, using interactive node available for
other users.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

 IBM p690
 linear scaling
 Amdahl's law

Number of CPUs

sp
ee

d-
up

32 *106 particles

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

 IBM p690
 linear scaling
 Amdahl's law

sp
ee

d-
up

Number of CPUs

8 *106 particles

Fig. 2. Hard scaling properties of the parallel TRQR for two different numbers of pseudo-particles

Strong scaling benchmarks were done for two values of the total particle

number: 32·106 and 8·106 – Fig.2. One can see that the influence of
communication overheads is larger in the case of a small particle number. The
speed-up factor nS for n CPUs is calculated according to formula:

 1
n

n

TS
T

,

where T1 and Tn are times for single and nCPU computations, respectively)
achieves in the case of 8 CPUs reasonable value of 7.04 for 32·106 particles,
whilst only 5.5 for 8·106 particles. Those values correspond to the efficiencies of
0.88 and 0.69, respectively. Efficiency is a performance metric showing how
well-utilized CPUs are compared to the effort of communication and
synchronization. Defined as

 n
n

SE
n

has values between 0 and 1. The obtained speed-up values are presented together
with the linear speed-up line as well as the values predicted by Amdahl’s law
[10], which states that even small sequential pieces of a parallel code are a
bottleneck and hinder performance. Amdahl’s law could be written in the
following form:

 1
1nS

F F n
,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

Marcin Turek, Marcin Brzuszek … 144

where F is the fraction of the code that is sequential. The values of F are taken
from Table 1, which presents the execution time fractions for most important
pieces of the code.

Note quite satisfactory agreement of theoretical predictions with the obtained
speed-up values.

Table 1. Execution time fractions for most important pieces of the code. (MOVE – particles ‘push’
subroutine, check for wall hits, etc. RE-FILL – refilling the plasma chamber with a proper number

of particles in order to keep plasma density invariant, CHARGE - charge density calculations,
POISSON – Poisson equation solver, FIELD – electric field calculations)

Block execution time percentage
Block of TRQR code

Case of 8·106particles Case of 32·106particles
MOVE 80.0 87.6

RE-FILL 1.32 1.48
CHARGE 9.20 8.47
POISSON 8.47 2.03

FIELD 0.80 0.23
OTHER 0.23 0.23

The fraction of the POISSON block gets smaller with the increasing number

of computational particles (fraction of this piece of the code is dependent mostly
on the size of the spatial grid).Execution times of remaining pieces of the code
are dependent on the particle (per CPU) number and decrease as CPU numbers
get larger (see Figure 3.).

0 2 4 6 8 10 12 14 16

0.1

1

10

100

tim
e

[s
]

number of CPUs

 MOVE
 SORT
 RE-FILL
 CHARGE
 POISSON

8*106particles

0 2 4 6 8 10 12 14 16
0.1

1

10

100

1000

tim
e

[s
]

number of CPUs

32*106particles MOVE
 SORT
 RE-FILL
 CHARGE
 POISSON

Fig. 3. Execution times for most important code pieces as a function of CPU number

The MOVE block, including particle ‘push’ subroutines, check for wall hits

etc. is the most CPU time consuming one. However, for a relatively small
number of particles per CPU, its execution time becomes even smaller than that

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

An MPI-based parallel code for high performance … 145

of POISSON solver. Hence, under such conditions the increase of CPU number
is pointless.

Figure 4 presents the weak scaling properties of the TRQR code. Up to 8
processors the scaling is almost linear. The results are very similar for both
presented cases.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

 IBM p690 Power4
 linea scaling

Number of CPUs

no
rm

al
iz

ed
 s

pe
ed

-u
p

2 *106 particles
(per CPU)

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

Number of CPUs

 IBM p690 Power4
 perfect scaling

8 *106 particles
(per CPU)

no
rm

al
iz

ed
 s

pe
ed

-u
p

Fig. 4. Weak scaling properties of parallel TRQR

Once again one can observe reduction of efficiency caused by the sequential

POISSON block from 0.94 for 8 CPUs to approximately 0.75 when the number
of CPUs doubles. Nevertheless, using a large number of CPUs with the parallel
TRQR code gives opportunity to run massive simulations involving hundreds of
millions of particles.

5. Exemplary results

In this section we present some results obtained using the parallel TRQR
code. Behaviour of the plasma in the ion source chamber as well as extraction of
negative ion beam in the multi-aperture extraction system were studied. Plasma
grid and extraction electrodes geometry correspond to those of RF ion source
with the CEA grid extraction system installed at IPP in Garching [1]. The
geometry of the simulation area is presented in Figure 5 as a cross-section
through a three-dimensional structure. Particles are randomly ‘created’ with
uniform distribution inside the shaded area. The plasma in the chamber consists
of H-, H+, and electrons with the species ratio 0.1/0.5 /0.4 respectively. Initial
velocities are randomly directed, and their values correspond to energy of 1 eV.
During calculations 64·106 of macro-particles were used. The total plasma
density was 1·1016 particles/m3. The simulation was run on the 8 CPU IBM p575
system with Power5 1.9 GHz processors and 32 GB memory.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

Marcin Turek, Marcin Brzuszek … 146

Fig. 5. Schematic view of simulation area and electrode geometry

The NGP charge distribution scheme to the 100×100×100 Cartesian spatial

grid was applied. The simulation was stopped after 3150 iterations. The time
step was 5·10-11 s. The code recorded plasma component charge densities and
plasma potential distribution every 450 iterations.

Figure 6 presents the potential profiles along the central line of the chamber at
four stages of simulation. The initial profile is very steep, in fact, it does not
differ much from the potential profile in the case of empty chamber. However,
after some time screening properties of plasma make it flatter and flatter inside
the chamber – there is no electric field in the plasma.

0 10 20 30 40 50 60

0

50

100

150

200

64*106 particles

particle density - 1016 m-3

po
te

nt
ia

l [
V

]

X [mm]

 450 steps
 1350 steps
 2250 steps
 3150 steps

potential profile
 inside the chamber

Fig. 6. Evolution of the plasma potential profile

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

An MPI-based parallel code for high performance … 147

Figures 7 a), b), c) and d) show the cross-sections of potential density and
electron, H- ions and H+ ions charge densities, respectively, after 3150 time steps.
One can see multi-meniscus formation, collective behaviour of negative and
positive particles as well as sheath on the walls of the chamber.

0 2 4 6 8 10

-6

-4

-2

0

2

4

6

X [cm]

Y
[c

m
]

 a) potential [V]

0

40.00

80.00

120.0

160.0

200.0

 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

Y
[c

m
]

X [cm]

electrons
charge density

 [C/m3]
-0.001300
-0.001170
-0.001040
-9.100E-4
-7.800E-4
-6.500E-4
-5.200E-4
-3.900E-4
-2.600E-4
-1.300E-4
0

b)

0 2 4 6 8 10

-6

-4

-2

0

2

4

6 c)

X [cm]

Y
[c

m
]

H+ ions
charge density

 [C/m3]

0

3.200E-4

6.400E-4

9.600E-4

0.001280

0.001600

0 2 4 6 8 10

-6

-4

-2

0

2

4

6
d)

X [cm]

H- ions
charge density

 [C/m3]

Y
[c

m
]

-5.500E-4

-4.400E-4

-3.300E-4

-2.200E-4

-1.100E-4

0

Fig. 7. The plasma potential and charge density distribution at the final stage
of simulation (after 3150 time steps)

Summary

In the paper a new, effective tool for ion source plasma modelling is
presented. The TRQR code employing the MPI parallelization platform shows
good efficiency during huge simulations on the medium-scale SMP clusters and
yields results of physical meaning. Better scalabilty could be achieved by a)
parallelizing the Poisson solver (using e.g. domain decomposition scheme or
quite a new solving algorithm based on the FFT technique) b) mixing MPI
message communication with shared-memory based parallel platforms like
OpenMP, which is a new trend in large-scale parallel computing for waste SMP
clusters (fast OpenMP is employed for intra-node parallelization, while the
slowest MPI supports communication between nodes). This will be a goal for
future studies.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

Marcin Turek, Marcin Brzuszek … 148

Acknowledgement
This work is supported by Maria Curie-Sk odowska University in Lublin in

the frame of the grant of MCSU Rector from the Polish Ministry of Science and
Higher Education funds.

References

[1] Vollmer O., Heinemann B., Kraus W., McNeely P., Riedl R., Speth E., Trainham R., Wilhem
R., Fusion Eng. and Des., 56-57 (2001) 485.

[2] Staebler A., Sielanko J., Goetz S., Speth E., Fusion Technology. 26(2) (1994) 145.
 Sielanko J., Muszy ski M., Electron Technology, 30(4) (1997) 352.
 Turek M., Sielanko J., Franzen P., Speth E., AIP Conference Proceedings, 812 (2006) 153.
 Turek M., Dro dziel A., Pyszniak K., Sielanko J., Vacuum, 78 (2005) 649.
[3] Birdsall C.K., Langdon A.B., Plasma Physics Via Computer Simulation, McGraw-Hill, New

York (1985).
 Hockney R., Eastwood J., Computer Simulation Using Particles. Mir, Moskwa, (1987).
[4] Kim C. C., Parker S. E., J. Comp. Phys., 161 (2000) 589.
 Hatzky R., Parallel Computing, 32 (2006) 325.
[5] Decyk V.K., Karmesin S.R., de Boer A., Liewer P.C., Computers in Physics, 10 (1996) 290.
[6] Sielanko J., Turek M., Tanga A., Annales UMCS-Informatica AI, 2 (2004) 251.
[7] Brzuszek M., Turek M., Sielanko J., accepted to Annales UMCS-Informatica.
[8] Foster I., Designing and Building Parallel Programs.
 available online at http://www- unix.mcs.anl.gov/dbpp/
 Wilkinson B., Allen M., Parallel Programming, Prentice Hall, Upper Sadle River, (2005)
[9] Turek M., Franzen P., Sielanko J., Annales UMCS Informatica AI, 3 (2005) 235.
[10] Amdahl G., AFIPS Conference Proceedings, 30 (1967) 483.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:22:17

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

