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Abstract 
The paper provides a classification of shape representation and description techniques and a 

review of some of the most important techniques. We examine shape description techniques on the 
reconstructed boundaries of brain structures (white matter) in the magnetic-resonance (MR) 
images using the Fourier descriptors for various frequency components in order to characterize 
brain structures. 
 

1. Introduction 
An object consists of interior points or contents surrounded by a boundary. 

Objects can be characterized by certain features: grey levels, textures, edges, 
boundaries, shapes, locations, etc. The shape is the most important visual feature 
of an object generally considered as the form of the object boundary.  

A shape boundary of the object, which is often called the object contour, 
considered as a closed, planar curve that can be defined as the function in: the 
explicit form as y = y(x); the implicit form, for example f(x,y) = 0; the parametric 
form by natural parameterization c(l) = (x(l),y(l)), every point (x0,y0)…(xN–1,yN–1) 
of the contour c of the object can be represented by taking the arc length l as a 
parameter with 0  l  L, where L is the length of the contour; the parametric 
form in the polar coordinates as (l) = (d(l), (l)); the parametric form in the 
complex plane, z(l) = x(l) + i  y(l). 

In order to describe and classify brain structures there is used the shape 
analysis based on various shape representation and description techniques for 
precise quantification and measurement.  

Shape representation techniques that operate on the segmented image, 
represent the object in a suitable form and then as a post-processing technique 
uses a shape description which generates descriptors of the shape. Descriptors of 
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the shape are a set of numbers describing specific characteristics of an object and 
considered as shape parameters of these objects they can be compared and 
recognized by matching. Descriptors should not depend on geometrical 
transformations such as translation, rotation and changes of scale. It means that 
they should be invariant to these three transformations and do not change the 
shape of an object. 

 
2. Classification of shape representation and description techniques 

Generally there is no accepted methodology of shape representation and 
description techniques [1], a good review on techniques can be found in [1-5], 
but common shape representation and description techniques can be classified 
into two classes [3-6]:  

– contour-based methods, also called external methods, based on information 
extracted from the object boundary and its features (in terms of boundary 
length); 

– region-based methods, also called internal methods, based on the 
information extracted from the shape region occupied by the object. 

Each of these classes, contour-based and region-based methods can be 
divided into two types of approaches based on how information is extracted [3]: 

– structural approach, also called discrete, decompose the shape boundary or 
shape region into segments or sub-parts, called primitives, using some 
criterion; 

– global approach, also called continuous, does not divide shape boundary or 
whole shape region into segments.  

The hierarchy of the classification of shape representation and description 
techniques is illustrated in Fig. 1. 

Shape representation and description techniques can also be classified into 
three categories: local, global and medial (combination of local and global 
properties) techniques [2]. Local and global shape representation techniques 
differ on the basis of the access of the shape properties: local provides access of 
the shape boundary points, allows to extract specific, localized characteristics 
(chain code, signature, polygon, convex hull, spline); global techniques 
representing the overall shape is suitable for extracting more general shape 
characteristics (Fourier descriptors, moments, Hough transform). Medial shape 
representation is combination of local and global properties (media axis, 
skeleton). Local description techniques or local descriptors mainly based on 
differential geometry of the shape, allow extract local structural shape 
characteristics such as the boundary curvature or corners. On to the contrary, 
global shape descriptors provide global information based on the overall shape 
contour properties such characteristics as perimeter, area, compactness, bending 
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energy, eccentricity, Fourier descriptors, fractal dimension. From the medial 
shape representation there can be generated medial descriptors local: normal 
(end, branch) points, shape width; global: medial orientation, diameter. 
 

 
shape representation and 
description techniques 

contour-based methods region-based methods 

structural approach 

Chain Code 
Polygon 
Spline 
 

global approach 

Signature 
Perimeter 
Eccentricity 
Line Moments 
Hausdoff Distance 
Fourier Descriptors 
Fractal Dimension 

structural approach 

Convex Hull 
Media Axis 

 

global approach 

Area 
Euler Number 
Eccentricity 
Spatial Moments 
 

 
Fig. 1. Classification of shape representation and description techniques 

 
3. Shape representation techniques 

In 1961 Freeman [7] devised a technique of boundary coding, called chain 
coding. Chain code and other structural contour-based shape representation 
methods are decomposed object boundaries into segments, primitives differing 
in selection and organization. In the general form they can be defined as: 
K = k1,k2,…,kn, where ki can represent the elements like a chain code, a side of a 
polygon, a spline, and others.  

The chain code is one of the simplest representation techniques in which 
shape of an object is represented by quantifying the position of points on its 
boundary. It achieves representation by analyzing each point on the boundary, 
run clockwise, and used to obtain a sequentially connected list of boundary or 
contour points based on 4- or 8-connectivity direction vectors.  

In the case of chain code representation an object can be completely 
reconstructed. The disadvantage of the chain code: for complex objects it may be 
too large: is not invariant to translation: chain code changes with the selected 
starting point, should be the same starting point for comparing chain codes the 
different objects; small variations in the contour for example due to noise, 
arbitrary distortion or a chosen segmentation method gives a different code.   

A polygonal representation [8,9] approximates an object contour by a 
polygon subdividing the contour points into groups, each of which is to be 
approximated by a polygonal side or a linear segment. The most accurate 
approximation can be defined as the number of linear segments of the polygon 
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being equal to the number of points of the object contour. The most known 
methods of polygonal representation are based on the use of some approximation 
criteria such as the minimal error, the minimal polygon perimeter, the maximal 
internal polygon area, the minimal external polygon area.   

Splines have been used to describe curves that can be divided into intervals. 
A spline of the order d is a piecewise polynomial function, consisting of 
concatenated polynomial segments or intervals, or spans, each of some 
polynomial order d, joined together at breakpoints or control points are called 
knots.  Usually the polynomial order d is fixed at quadratic (d = 3, the order of a 
polynomial is the number of its coefficients), or cubic (d = 4). The boundary of 
an object can be described by the set of curve intervals v(l) = {v1(l),…,vn(l)}, 
where the parameter l is arc length, as given by [10]: 

 
1

1
1

n
m

i i
i

v l v l q l l , (1) 

where m is degree m = d – 1, (l – li)m is zero then (l – li)  0 and qi is a constant 
proportional to the m derivative of v(l) with respect to l at l = li.  

Splines have a good property of minimizing curvature though they 
approximate a given function with a curve having the minimum average 
curvature. It provides compact “natural” representation of curves and allows for 
complete reconstruction of an object. 

A signature is a one-dimensional function representation of an object 
boundary, which can be constructed in various ways from the given two-
dimensional function of an object boundary. Chain coding, radius (angle), 
tangent angle, chord-length representations are all signatures and their many 
other forms have been proposed in literature [1,3,11].  

For example, the distance-versus-angle signature (the radius-angle) 
representation of the shape can be obtained as a sequence of the distances from 
the interior point usually centroid to each boundary point as a radius r( ) 
function of the angle .  is the angle between the radius, drawn from the interior 
point to each contour element, and the parallel x- or y- axes where 0    2 . 
This representation allows to reconstruct completely the object but it can be 
applied only for star-shaped objects, when r( ) is single-valued. The radius-
angle representation is not suitable for non star-shaped objects. 

A Fourier representation [5,12] decomposes a shape contour, into a set of 
numbers that represent its frequency components or Fourier descriptors, 
obtained by its Fourier transform. Each Fourier descriptor describes a global 
property of the shape of an object.    

Each point on the contour given parametrically can be represented by a 
complex number, the real and imaginary parts of which are the x and y 
coordinates of the points (x0,y0)…(xN–1,yN–1) in the form fx(l) = x(l) real and 
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fy(l) = y(l) imaginary parts. This allows the contour to be expressed as complex 
periodic function as: f(l) = fx(l) + j  fy(l), 1j . 

The discrete Fourier transform of f(l) is [7,13]: 

 
1

2 /

0

1 N
j u l N

l
T u f l e

N
 (2) 

for u = 0…N – 1. 1/N multiplier in front of the Fourier transform sometimes is 
placed in front of the inverse transform [12] (as in our application). Fourier 
descriptors of the contour are given by the complex coefficients T(u). The 
contour function f(l) can be recovered with  the inverse transform of T(u): 

 
1

2 /

0

N
j u l N

u
f l T u e  (3) 

for l = 0…N – 1. However, instead of all the T(u) coefficients, only the first M 
coefficients are used to recover the contour, then the contour is approximated by 

 
1

2 /

0

ˆ
M

j u l N

u
f l T u e  (4) 

for l = 0…N – 1, although only M terms are used to obtain each component of 
ˆ ( )f l . The same number of points still exists in the approximate contour, but 

fewer Fourier coefficients are used for reconstruction.  
The infinite number of moments provides an effective description of the 

shape contour in terms of statistical analysis. Moment descriptors are very useful 
and practical being concentrated on statistical properties of the closed contour of 
an object by analyzing the distribution (probability density function) of values in 
a discrete binary image function – called spatial moments [7] or region-based 
moment, or by analyzing the distribution of values in a function of an object 
closed contour – called line moments [12] or contour-based moments.  

In order to obtain the contour-based moments along the contour assuming that 
the contour of an object is defined parametrically by c(l) = (x(l),y(l)). The 
contour-based moments are given by 

 
1

0

N p qc
pq i i

i
m x l y l  (5) 

The central contour-based moments can be obtained by  

 
1

0

N p qc
pq i i i i

i
x l x l y l y l ,  (6) 

where 10 00( ) c c
ix l m m  and 01 00( ) c c

iy l m m , 

00
cm  corresponds to the length of the object boundary. 
The scale invariant central contour-based moments will be defined as 

 c c c
pq pq oo , where 1p q . (7) 
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A set of invariant moments with respect to translation, rotation, and scaling 
can be obtained from the second- and third-order moments. Some examples are:  

 

2 2
1 20 02 2 20 02 11

2 2 2 2

3 30 12 21 03 4 30 12 21 03

     4

3 3     

c c c c c

c c c c c c c c
 (8) 

Some shape descriptors which can contribute to classification of objects are 
based on moments. The orientation of an object, defined as the direction along 
which the object is most elongated is computed as the angle  between the x axis 
and the axis around which the object can be rotated  

 11

20 02

21 tan
2

c

c catc . (9) 

The eccentricity  of an object ranges from 0 for a circular object to 1 for a 
straight line and can be measured as  

 
2 2

20 02 11
2

20 02

4c c c

c c
. (10) 

 
4. Shape description techniques 

An important local shape descriptor is curvature. The curvature k at the point 
p along a contour is defined as the rate of change of the slope angle (l) in 
tangent line l(l) and positive x-axis. Assuming that the contour is defined in an 
explicit form (y = y(x)) the slope angle in the tangent direction is given by [13]: 

 1tan dyl
dx

. (11) 

The curvature of any point on the contour is then given by the rate of change 
of slope (l) 

 
d l

k l
dl

. (12) 

The curvature for the contour defined parametrically c(l) = (x(l),y(l)) is given 
by  

 3/ 22 2

x l y l y l x l
k l

x l y l
. (13) 

This relationship is the standard measure of a parametric curve curvature and 
it is called the curvature function [5]. Curvature can be used to characterize 
contour points as convex if the curvature at point P is positive and concave if it 
is negative. Finding positive and negative local maxima of the curvature (local 
maxima of the absolute curvature) is used for corner detection. 
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Common global shape descriptors of an object X are perimeter, area, 
compactness. The perimeter can be estimated by adding the distance between 
successive points in a contour, as 

 
1 2 2

1 1
0

N

i i i i
i

P X x l x l y l y l . (14) 

The area of an object can obtained as  

 
1

1 1
0

1
2

N

i i i i
i

A X x l y l y l x l . (15) 

Compactness, determined by using the perimeter P(X) and the area A(X) of an 
object X, defined as 
 2 /C X P X A X , (16) 
measures roundness of a shape that is how close an object is to the circle. The 
value of compactness is minimal for the circular shape (4   12.57 for the circle) 
that encloses a given area with the shortest perimeter. The value increases with 
the increasing shape complexity. However, the perimeter and the area are 
invariant to translation and rotation and are not invariant to scaling the 
compactness. They are invariant to all geometrical transformations: translation, 
rotation and scaling. Thus compactness is useful to distinguish objects 
independently of their orientation and size on the image plane. Sometimes the 
normalized variant is used in the form C’(X) = 1 – 4 /C(X) ranging between zero 
and one.  

Shape of an object can be represented by its bending energy, defined as the 
energy necessary to bend a rod to a desired shape and is obtained as the sum of 
squared contour curvature k(l) (being defined in Eq. 12, 13) over the shape 
contour having length L:  

 
1

2

0

1 N

i
i

B X k l
L

. (17) 

The fractal dimension is often considered as a parameter describing 
morphological complexity of objects. The fractal dimension value reflects 
alterations of structural properties. One of the methods, that we used, to estimate 
fractal dimension is called the hand and dividers or yardstick method [13], based 
on perimeter estimation using step or “yardstick” of different sizes. This 
dependence can be mathematically expressed as the relation P(X)  1–FD, where 
P(X) is the perimeter of the object X,  is a step size and FD is the fractal 
dimension. The fractal dimension FD of the object can be estimated from a 
linear regression defined by log(P(X)) = (1 –FD)  log( ) + const. 
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5. Experiment 
In order to describe and classify brain structures, shape description methods 

are employed. Fig.2 (a1, a2) shows two MR images, one of a patient with severe 
deformations of the white brain matter (Patient A) and one of a patient with only 
subtle deformations (Patient B). The object boundaries (shown in Fig. 2 a2, b2) 
of white brain matters are reconstructed using the Fourier descriptors for 
different levels of M (given in Eq. (4)). As illustrated in Fig.2 a3-a8, b3-b8, 
higher level of M accounts for fine detail, more complex shapes are 
reconstructed, when M becomes lower more detail is lost on the boundary of an 
object. The task is to evaluate the resulting reconstructed boundaries of different 
levels of M with shape descriptors in order to describe and classify brain 
structures and examine shape description techniques.  
 

a1) Patient A a2) Contour A b1) Patient B  b2)Contour B 

a3) A(M=16) a4) A(M=50) b3) B(M=16) 
 

b4) B(M=50) 

a5) A(M=100) a6) A(M=500) b5) B(M=100) 
 

b6) B(M=400) 

a7) A(M=1200) a8) A(M=N=2865) b7) B(M=750) 
 

b8) B(M=N=1838) 
Fig. 2. Selected samples of reconstruction boundaries of white matters patient A a1, patient B 

b2, using the Fourier descriptors for various levels of M (frequency components) 
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Table 1. Values for the selected levels of M (frequency component, given in Eq. 4): A – area 
(pixels), P – perimeter (pixels), C – compactness, B – bending energy,  – eccentricity, 1 – 

combination of scale invariant central moments (given in Eq. 8), FD- fractal dimension 
Table 1. a) Patient A 

No M A  P C B  1 FD 
1 2800 68558 7240.51 764.68 4.22 0.35106 0.00435 0.39106 
2 2500 67988 6919.88 704.31 4.47 0.32921 0.00498 0.33555 
3 2300 68019 6725.54 665.00 4.64 0.31544 0.00543 0.33375 
4 2000 68167 6472.01 614.47 4.77 0.29710 0.00610 0.32819 
5 1800 68302 6355.66 591.40 4.78 0.28984 0.00645 0.32280 
6 1500 68568 5444.62 432.32 5.39 0.21809 0.01025 0.31716 
7 1200 68550 3202.59 149.62 7.23 0.01229 0.05046 0.29665 
8 900 68656 2652.58 102.48 8.25 0.00592 0.08887 0.29349 
9 500 68781 2582.21 96.94 8.34 0.01109 0.09635 0.29135 

10 100 68711 2285.76 76.04 13.92 0.05833 0.13909 0.27266 
11 50 68199 1993.28 58.26 15.36 0.17604 0.20966 0.23536 
12 16 66698 1491.61 33.36 11.07 0.79279 0.50097 0.14445 

 

Table 1. b) Patient B 

No M A  P C B  1 FD 
1 1800 71955 4664.45 302.37 4.17 0.34362 0.00970 0.18780 
2 1700 71454 4535.74 287.91 5.15 0.33205 0.01055 0.15253 
3 1600 71463 4509.02 284.50 5.58 0.32821 0.01074 0.14442 
4 1500 71567 4465.51 278.63 5.29 0.32407 0.01107 0.14108 
5 1300 71656 4282.43 255.93 5.44 0.30487 0.01255 0.13982 
6 1100 71804 3778.57 198.84 5.82 0.24756 0.01827 0.14062 
7 900 71826 2469.27 84.89 7.21 0.06251 0.06558 0.13672 
8 750 71852 1915.12 51.05 8.04 0.00167 0.14062 0.13664 
9 400 71921 1581.18 34.76 8.93 0.02346 0.25016 0.13537 

10 100 71961 1532.31 32.63 9.74 0.03667 0.27568 0.12530 
11 50 71852 1439.29 28.83 12.31 0.07024 0.33208 0.10789 
12 16 71303 1261.43 22.32 12.56 0.19079 0.49248 0.07113 

 
6. Results 

We have evaluated shapes, which reconstructed using the Fourier descriptors 
for different levels of M, for patients A and B with the suggested shape 
descriptors. Fig. 3 shows a graphical display of how the shape descriptors for 
each patient behave over different levels of M. The perimeter, compactness and 
fractal dimension increase drastically with the increasing levels of M, as the 
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shape becomes more complex during the process. The area shows increases for 
lower M than slight decreases and at higher levels M increases. Bending energy 
and the descriptor 1 show drastically decreases and at higher levels monotone 
decreases. The eccentricity shows drastically decreases at lower levels M and 
monotone increases at higher levels. The numerical evaluation presented in 
Table 1a) and b) shows that in terms of absolute values, perimeter, compactness, 
fractal dimension are higher and the area is lower for patient A with severe 
deformations of the white brain matter (shape more complex) than for patient B 
with only subtle deformations. 
 

Area  Perimeter Compactness 

Bending energy Eccentricity 1 combination of scale  

Fractal dimension 

 invariant central moments 
(given in Eq. 8) 

Fig. 3. Shape descriptions for reconstructed boundaries of different levels of M (frequency 
component given in Eq. 4) of patient A and patient B 

 
6. Conclusions  

In this paper shape representation and description techniques have been 
reviewed. Shape representation and description techniques can be classified into 
classes based on information extracted from the whole object or only from the 
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boundary: contour-based and region-based. In each class the techniques can be 
divided into structural and global. Also shape representation and description 
techniques can be classified into three categories based on the access of the 
shape properties: local, global and medial.  

In order to describe and classify brain structures and examine shape 
description techniques the boundaries of white brain matters in one of the 
patients with severe deformations and in one of the patients with only subtle 
deformation were reconstructed using the Fourier descriptors for various 
frequency components. We evaluated the resulting reconstructed boundaries 
with the shape descriptors: region size, perimeter, compactness, bending energy, 
eccentricity, 1 (combination of scale invariant central moments) and fractal 
dimension. Our investigations show that shape descriptions over the object 
boundary become more complex (at higher frequency component). Our 
application for obtaining shape descriptors can be useful for clinicians to detect 
and analyze of the shape changes of the brain. 
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