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Abstract — In this paper we investigate correcting properties of LDPC codes obtained from families
of algebraic graphs. The graphs considered in this article come from the infinite incidence structure.
We describe how to construct these codes, choose the parameters and present several simulations, done
by using the MAP decoder. We describe how error correcting properties are dependent on the graph
structure. We compare our results with the currently used codes, obtained by Guinand and Lodge [1]

from the family of graphs D(k, ¢), which were constructed by Ustimenko and Lazebnik [2].

1 Introduction

The first work in the field of Coding Theory was published in 1948 by C. E. Shan-
non [3], who initiated the development of this theory. Today Coding Theory is very
important because we are living in the information society. The information provided
by non-ideal communication channels is always the subject to error, therefore, there is
a need to use error correcting codes. Tools of Coding Theory have to be used together
with cryptographic algorithms because even a unique error during the transmission
of ciphertext can make the decryption impossible. One powerful class of error cor-
recting codes are the LDPC codes, which were discovered by Robert Gallanger in his
work Low-Density Parity-Check Codes [4]. They were forgotten for twenty years to
get back in the nineties, for example see [5, 6, 7]. They have been adopted in many
recent communication standards such as DVB-S2, 10GBase-T, 802.16e and 802.11n.
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Construction of LDPC codes can be random or based on Finite Geometries, cyclic
structures or quasi-cyclic structure. Those based on geometric structures have linear
decoding complexity, while for random codes decoding complexity is exponential. In
this paper we observe recent results on applications of Computer Algebra and The-
ory of Algebraic Graph and construction of new LDPC. The ability to use graphs in
construction of LDPC was first discussed by Tanner [8]. Construction of Tanner type
codes based on the expander graphs was considered for example by Siper and Spielman
[7], Guinanad and Lodge [9, 1].

The LDPC codes can be regular or irregular. The best results were obtained for the
irregular LDPC codes but it is known that their construction often leads to error-floor,
which very rarely takes place in the case of regular codes and coding complexity in the
case of irregular codes is greater. In the regular LDPC code every row has the same
constant weight d. and every column has the same constant weight d,,.

The error correcting code is A C F5 | where Fo = {0,1} and the codewords are in
the classical Hamming metric:

d(z,y) = {i: @i # yi}.
We assume that every codeword is from the set:
C={y e Fy|Hy" =0},

where H is a parity check matrix for the code C.

In order to improve the transmission quality for each text block of the length /N there
are added k bits, which do not carry information and only have checking properties.
As a result of the action, we get the code words y € C' of the length N. Such a code
has r = N — k parity checks and is denoted by [N, k]. The ratio r/N is called code
rate and is denoted by Rc.

The linear error correcting code can be represented in three ways: by the generator
matrix G, parity check matrix H or Tanner graph I'(V, E). The parity checks matrix
for [N, k] code is r x N matrix whose words are zeros or ones. Rows of this matrix
correspond to the equations of parity check and the columns to the codeword bits. If
the bit number j in the codeword is checked by the parity check number 4, then in the
position (4,7) in the matrix H is one, if not there is zero. Each bit is checked by a
unique set of control equations. The switching column does not change code properties
and provides an equivalent code. The standard example of Low-Density Parity-Check
Codes given by Gallanger [4] is code [16, 12] with the matrix H of the form:

11 1 1[0 O O OfO O O O|O O O O
o o o o001 1 1 140 O O O|O O O O
o o0 o of0 O O o1 1 1T 1|0 O O O
o o o o0j0 O O OO O O O|1 1 1 1
1P 0 o oj1 0o O Of1 O O O|1 0 0 O
o 1 0 00 1 O OO0 1 O O|O 1 0 O
o o0 1 0of0 O 1 OO O 1 OO0 O 1 O
o o0 o0 10 O O 1|0 O O 1]0 O O 1
$P 0 0 ojo 1 0 OfO0 O 1 0|0 O O 1
o 1 o0 of0O0 O 1 OfO O O 1|1 O O O
o o 1 00 O O 11 O O O|O 1 0 O
o o0 o0 11 0 O OfO 1 O OO0 O 1 O
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The code which has a representation as a sparse matrix or a sparse Tanner graph is
called the Low-Density Parity-Check Code. A matrix is sparse if the number of ones
in it is small compared to the number of zeros.

Generator matrix G for [N, k] code is k x N zero-ones matrix whose rows create code
base. G creates a codeword y for the information vector x of the length k: y =« - G.
Each information vector corresponds to exactly one codeword. Parity checks matrix
and generator matrix are both dependent.

Bipartite graph is called the graph I'(V, E') in which a set of nodes V' can be repre-
sented as the disjoint union V' = V; UV5 in such a way that no two vertices from each set
Vi, i = 1,2 are connected by edge. Tanner graph is called the bipartite graph in which
one subset V; corresponds to the codeword bits and the other V5 to the parity checks.
The vertex from the set V; is connected to a vertex from the set V5 if and only if a bit
corresponding to the vertex from Vi is controlled by the parity check corresponding to
the vertex from V5.

There is a standard way to create the LDPC codes depending on the adjacency
matrix of bipartite, biregular Tanner graph. The parity check matrix H is a part of
the adjacency matrix of graph used to create a code. If V3 > V5 then the adjacency
matrix has the form:

VZ Vl

v /0 H
V. \HT 0

Matrix H is sparse if and only if corresponding graph is sparse, which means that
it has a small number of edges in relation to the number of vertices. The simple
relationship describing the density of the graph I'(V| F) is

2|
9= 50 3
VIV =1)

where |E| is the number of edges of graph T" and |V| is the number of vertices.

2 Descryption of graphs

The missing definitions from the Simple Graphs Theory can be found in [11]. The
families of graphs described below are the families of simple graphs. Simple graphs are
undirected graphs containing no graph loops or multiple edges. A distance between
the vertices v; and vy of the graph is the length of the minimal path from vy to vy. A
graph is connected if for the arbitrary pair of vertices vy, vy there is a path from v, to
vg. The girth of a connected, simple graph is a length of the shortest cycle in a graph.
We refer to the bipartite graph I'(V; U V4, E) as (a, b) biregular one if every vertex from
V1 has a degree a and every vertex from V5 has a degree b. We call a graph regular in
the case a = b.
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Let K be a commutative ring. The graphs from the families D(n, K), D(n, K) and
A(n, K) are bipartite, |K|-regular, sparse and without cycles of the length less than 6
for arbitrary n and K. They come from infinite incidence structures. These graphs
are good expanders ([12, 10]). The following interpretation of D(n, K) can be found
by the reader for example in [12]. Traditionally one subset of vertices in the graphs
D(n, K) is denoted by V3 = P and called a set of points and another one V5 = L is
called a set of lines. P and L can be considered as two copies of the Cartesian power
K™, where n is a positive integer. Brackets and parentheses allow us to distinguish
points and lines.

If z € K", then (z) € P and [z] € L. Let us use the notions for points and lines
introduced in [12]:

(p) = (po,hP1,1,P1,27P2,1,pz,z»plz,mpz,sa ~-7pi,z‘7P§,¢7P¢,i+1ypi+1,1m)a (1)

1 =1ho 12 20,022,059, 02,3, o Ly U iy Liig1s L na o)

We now define an infinite incidence structure (P, L, I) in the following way. We say

that the point (p) is incident with the line [], and we write (p)I[l], if the following
relations between their coordinates hold:

lip—pig=1liop1o

11,2 — P12 = 51,1101,0

la,1 —p21 =lo,1p1,1

lii = piyi = lo,1Pi—1.i (2)
171,1 - piz = li,i—lpl,o

li,i+l — Diji+1 = li,i—lpl,o

lz’+1,i — Pit+1,4 = lo,1p§,i

where i > 2. The set of vertices (P,L,I) is P U L and the set of edges consisting
of all pairs {(p), [[|} for which (p)I[l]. For each positive integer n > 2 we obtain a
finite incidence structure (P, Ly, I,) as follows. Firstly, P, and L,, are obtained from
P and L, respectively, by projecting each vector onto its n initial coordinates with
respect to the natural order. The incidence I,, is then defined by imposing the first
n—1 incidence equations and ignoring all others. The graph corresponding to the finite
incidence structure (P,, Ly, I,,) is denoted by D(n, K).

—

The family of graphs D(n,K) described below comes from the Cartan matrix

2 =2
< 5 o ) Let us use the analogous notions for points and lines in the graph

D(n,K):
(P) = (Po,l7101,17Pl,z,pz,hpz,z’pz,& ~-~7pi,iapi,i+17pi+1,1-~-)a

3)

[l] - [l1,07 ll,l? ll,?a l2,1a l2,2a 12,37 cey li,ia li,i+17 li—‘rl,l"']'

The infinite incidence structure (P, L, I) is defined in the following way. We say that
the point (p) is incident with the line [I], and we write (p)I[l], if the following relations
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between their coordinates hold:

liai—pi1 =100

lipg—pi2=1l11p10

la1 —p2,1 =lo1p11 (4)
lii = piyi = lo1Pi—1,i — lii—1D1,0

liit1r — Piyie1 = lii—1p1,0

liv1,i = Pit1s = loapii

—~—

where ¢ > 2. The graph corresponding to the finite incidence structure (P, Ly, I,,)

e~

obtained by the way described above is denoted by D(n, K).
For the graph A(n, K) let us use the notion for points and lines:

(P) = (P0,1»P1,17P1,2,P2,2,P2,37 ooy Pigis Pijit1, )7 (5)

I =1h0l71,012 122023, lii liig, -]
For this graph we define an incidence structure (P, L, )4 as follows. We say that the

point (p) is incident with the line [I], and we write (p)I[l], if the following relations
hold:

Ny, W )
7,041 Piji+1 = t3,4P0,1

Denote this infinite incidence structure (P, L, I)4 as A(K) and it can be identified with
the bipartite incidence graph of (P, L,I)4. A(K) is an infinite tree. For each positive
integer n > 2 we obtain an finite incidence structure (P,,L,,I,)4 as above. The
incidence graph corresponding to the structure (P, L, I,) 4 is denoted by A(n, K).

—~—

In the case K = [F,, where ¢ is the prime power we denote D(n,F,), D(n,F,) and

—_

A(n,F,) simply as D(n,q), D(n,q), A(n,q) accordingly.

D(n,K), D@?() and A(n, K) have different structures for n > 6. For all n they
are | K|-regular but have a structure that allows us to remove points and lines in such
a way that we can obtain an arbitrary bidegree (a,b) for 1 < a,b < |K|. We can make
it as shown in [13]. When L is a set of all lines and P is a set of all points to obtain
the desired bidegree (a,b) we must put restriction on coordinates. Let A C F, and
B C F, be an a-element and b-element subsets respectively and let Vp and Vi, be sets
of points and lines in the new bipartite graph. They are the following sets:

Ve = {(p) € Ple, € 4}

Vi ={[l] € L|¢ € B},
where ¢, is fixed coordinate of points and ¢; is fixed coordinate of lines. Usually
restriction are imposed on first coordinates.

3 Code construction and results

The described families consist of simple, bipartite graphs of high girth ( girth bigger
or equal 6 for any parameters so there are no short cycles) . It is good for codes because
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Fig. 1. Graph D(2,3) = D(2,3) = A(2,3)

short cycles decrease the speed of decoding algorithms. The girth in the graphs from
the described families increases with the increasing n. In fact, the adverse influence
of short cycles decreases with the increasing length of the codewords N, but they also
contribute to the formation of the error-floor. To create the LDPC code with the
codeword of length N we use D(n, K) (D(n, K), A(n, K)), where nl%l > N. Each
of these graphs is already bipartite. To obtain biregularity we can use the above
described method. Let us denote the number of parity checks by d and it should be
at least 2. We reduce the bidegree to (d,|K]) by the method shown above. We can
also reduce the bidegree to (d,e), where d,e < |K| by taking smaller subsets A, B of
F,. We can impose restrictions on the value of chosen coordinate of lines or points.
Bidegree reduction can only increase the girth so there is no risk that short cycles will
appear. After the bidegree reduction the graph can become disconnected and divided
into several components. Choose one vertex and take the component containing this
selected vertex (point or line)and find all other vertices for which there is a path to the
chosen one. We use this component to create a parity check matrix. If |Vp| > |V, | then
the points correspond to the code words, the bits and lines to the parity checks, if not
then the lines correspond to the code words, the bits and points to the parity checks.
We decide to put one or zero in a parity check matrix by checking if relations (1), (2),
or (3) (depending on what family of graphs we create code) on their coordinates hold.

Transmission quality depends mainly on code, decoding algorithm and the level of
noise in a communication channel. Properties of error-correcting codes are tested by
determining the relationship between the noise level and the bit error rate. The bit
error rate (BER) is the ratio of the number of the error bits to the total number
of the transferred bits. Simulation is usually carried out for the Gaussian Channel
where disruptions are modelled by the White Gaussian Noise. Our simulations were
done using the BPSK modulation over the AWGN channel and simple MAP decoder
implementation with 10 iterations. Let y be the received codeword. The MAP decoder
works according to the rule which returns an output value z of a code word = for which
the a posterior probability P = (x|y, H) is maximized.

Traditionally d, means the number of ones per column in the matrix H and d.
the number of ones per row. In general, it is assumed that d, < d. in the case the
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number of bits of information is greater than the number of control bits for economic
reasons. In 1948 Claude Shannon [3] in his works proved that there exists a code
allowing the transfer of information from any small error probability if the rate of
information transmission is below the capacity. The parameter related to the error
correction properties of the code is the minimum distance d,,;, between the codewords
measured in the Hamming metric. Correction properties are better for the codes that
have a higher minimum distance or a very small number of codewords which are in the
minimum distance from each other. A study of asymptotic performance [14] shows the
future for the degree distribution: d, > 2 is enough. Every bit in the codeword should
be checked by a unique set of control equations. If d, = 2 then every bit is checked

r
by 2 equations and the condition: (2> > N is necessary. It is easy to see that for

every code in this article 72 > 2N. If d, > 3 then d,n;, for the code increases linearly
with the increasing N, so the error probability decreases exponentially with increasing
length of the block. Figs 2, 3 and 4 show that the presented codes give good results
for d, = 2. The codes considered in this article have d,, =min(a, b).

0 05 1 15 2 25 3 35 4 45
Eb/No (dB)

—~

Fig. 2. Bit error rate for [50,125] code (blue) based on D(6,5), [1250, 3125]
code (red) based on D(7,5), [1250, 3125] code (purple) based on D(8,5) and

P

[1250, 3125] code (black) based on D(10, 5)
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Fig. 3. Bit error rate for [50,125] code (green) based on D(6,5), [50,125]
code (blue) based on D(7,5), [250,625] code (purple) based on D(8,5) and
[1250, 3125] code (black) based on D(9,5)

Eb/No (dB)

Fig. 4. Bit error rate for [250, 625] code (blue) based on A(6,5), [1250, 3125]
code (green) based on A(7,5), [1250,3125] code (purple) based on A(8,5)
and [1250, 3125] code (black) based on A(9,5)

Tables 1, 2, 3 and 4 show the properties of the sample codes.
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Table 1. Properties of the graphs D(n, 5) after receiving bidegree (2, 5) used
for the presented sample codes

Based graph | |P| = |L| | Size of desired H | Block length
D(2,5) 25 10 x 25 25
D(3,5) 125 10 x 25 25
D(4,5) 625 50 x 125 125
D(5,5) 3125 50 x 125 125
D(6,5) 15625 50 x 125 125
D(7,5) 78125 1250 x 3125 3125
D(8,5) 390625 1250 x 3125 3125
D(9,5) 1953125 1250 x 3125 3125
D(10,5) 9765625 6250 x 15625 15625

Table 2. Properties of the graphs D(n, 5) after receiving bidegree (2, 5) used
for the presented sample codes

Based graph | |P| = |L| | Size of desired H | Block length
D(2,5) 25 10 x 25 25
D(3,5) 125 10 x 25 25
D(4,5) 625 50 x 125 125
D(5,5) 3125 50 x 125 125
D(6,5) 15625 50 x 125 125
D(7,5) 78125 50 x 125 125
D(8,5) 390625 250 x 625 625
D(9,5) 1953125 1250 x 3125 3125
D(10,5) 9765625 1250 x 3125 3125

Table 3. Properties of the graphs A(n,5) after receiving bidegree (2, 5) used
for the presented sample codes

Based graph | |P| = |L| | Size of desired H | Block length
A(2,5) 25 10 x 25 25
A(3,5) 125 10 x 25 25
A(4,5) 625 50 x 125 125
A(5,5) 3125 50 x 125 125
A(6,5) 15625 250 X 625 625
A(7,5) 78125 1250 x 3125 3125
A(8,5) 390625 1250 x 3125 3125
A(9,5) 1953125 1250 x 3125 3125
A(10,5) 9765625 6250 x 15625 15625

Figs 2, 3 and 4 show BER for the codes obtained from the graphs described in
Tables 1, 2, 3 accordingly. With the increasing parameter n, the graphs for the same
field produce the codes with better correcting properties (Figs 2, 3 and 4) and bigger
block length N. The graphs A(n,q) have the most consistent structure, so that they
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Table 4. Properties of the graphs D(5,q), D(5,q) and A(5, q) after receiving
bidegree to (2,5) and (2, q)used for the presented sample codes

Based graph |P| = |L| | Biregularity Size Block | Rc

of desired H | length
D(5,5), D(5,5), A(5,5) 3125 (2,5) 50 x 125 125 0.4
D(5,7), D(5,7), A(5,7) 16807 (2,5) 98 x 245 245 0.4
D(5,11), D(5,11), A(5,11) | 161051 (2,5) 242 x 605 | 605 | 0.4
D(5,7), D(5,7), A(5,7) 16807 (2,7) 98 x 343 343 | 0.28
D(5,11), D(5,11), A(5,11) | 161051 (2,11) 242 x 1331 | 1331 |0.18

give codes with the best correcting properties. For example, the graph A(8,5) after
the reduction of bidegrees to (2,5) splits into 125 components and D(8,5) into 625,
A(10, 3) after the reduction of bidegrees to (2, 3) splits into 81 components and D(10, 3)
into 243. The codes obtained from the graphs D(n, ¢) give the worst results in the case
of considered families of graphs.

0 05 1 15 2 25 3
Eb/No (dB)

—~

Fig. 5. Bit error rate for [1875,3125] code (red) based on D(6,5) and
[375,625] code (blue) based on D(5,5) after reducing bidegree to (3,5)

Use the bidegree (a,b), where a > 3 makes the desired codes much better (Fig. 5)
and of bigger block size. For these two presented codes d,, = 3. In the case of the codes
which come from the presented families, reducing bidegrees to (a,b) gives the code
rate Rc = ¢. The codes described in Tables 1, 2, 3 (Figs 2, 3 and 4) have the code
rate 0.4. When we use the bigger field F; we can obtain a different and often better
(more economial) code rate (For example see Table 4) and usually the code correcting
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properties do not change much. However, we must be careful because much bigger
field and reduced biregularity to (2, ¢) or (3, ¢) can give R¢ close to zero, but the error
correcting properties can be much worse.

The presented codes have a high possibility to choose the code rate Rc. In many
well known constructions, the code rate is strictly determined, for example it is equal to
1/2. David MacKay considerd [6] very good, randomly generated codes with the code
rate 1/2 and 1/4. The codes arising from the graphs with the symmetric adjacency
matrix, which was considered in [15] have the code rate 1/2 and 1. Fig. 6 shows
the codes: [75,150] (blue), [500,1000] (green), [1875,3750] (purple), [250,500] (black)
obtained from the random construction based on the Radford M. Neal’s programs
available from [6]. Radfold M. Neal and David MacKay reinvented the LDPC codes
in the mid-1990’, [6]. Fig. 7 shows the codes based on the presented graphs with the
same number of information bits & accordingly to the randomly generated codes. It is
easy to see that the codes (blue, green and purple) based ont he graphs (Fig. 7) with
the same number of information bits as the random codes (Fig. 6) have better error
correcting properties and smaller code rate (Table 5).

BER

10° i i
0 05 1 15 2 25 3 35 4 45
Eb/No (d5)

Fig. 6. Bit error rate for [75,150] code (blue), [500,1000] code (green),
[1875, 3750] code (purple) and [250, 500] code (black), all based on the Rad-
ford M. Neal random constructions [16] with the code rate Rc = 1/2.
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2 25 3 35 4 45
Eb/No (dB)

—~

Fig. 7. Bit error rate for [50,125] code (blue) based on D(6,5), [250,625]
code (green) based on A(6,5) , [1250,3125] code (purple) based on A(9,5)

and [375,625] code (black) based on D(5,5)

Table 5. Comparison between the presented codes and other effective LDPC

Number Block Number
Code of information | length | R of ones
bits per column
random [75, 150] 75 150 | 0.5 2
random [500, 1000] 500 1000 | 0.5 2
random [1875, 3750] 1875 3750 | 0.5 2
random [250, 500] 250 500 | 0.5 3
[50, 125] based on D(6,5) 75 125 0.4 2
250, 625] based on A(6,5) 500 625 | 0.4 2
[1250, 3125] based on A(9,5) 1875 3125 | 04 2
[375,625] based on D(5,5) 250 625 | 0.6 3
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