Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:25:09

Annales UMCS
Informatica
Annales UMCS Informatica AI XIII, 1 (2013) 23-35 Lublin-Poloni:
DOT: 10.2478 /v10065-012-0036-9 UDn-Lo. omd
Sectio Al

http://www.annales.umes.lublin.pl/

How validation can help in testing business processes
orchestrating web services

Damian Grela'*, Krzysztof Sapiecha!f, Joanna Strug!*

! Department of Computer Science, Cracow University of Technology,
Warszawska 24, 31-155 Krakow, Poland

Abstract — Validation and testing are important in developing correct and fault free SOA-based
systems. BPEL is a high level language that makes it possible to implement business processes as
an orchestration of web services. In general, the testing requires much more test scenarios than the
validation. However, in the case of BPEL processes, which have very simple and well structured
implementation, test scenarios limited to the validation may also be efficient. The paper describes an
experiment that aims at answering a question whether or not the validation test scenarios are also
adequate for testing an implementation of BPEL processes. The experiment employs a Software Fault
Injector for BPEL Processes that is able to inject faults when the test scenarios are running. The
results of the experiment seem very promising. Hence, it seems that validation tests might give a

strong support for testing.

1 Introduction

Recently, SOA (Service Oriented Architecture) [1] has become the most promising
architecture for IT systems. It offers a way of composing systems from loosely coupled
and interoperable services. The services are independent business functions made ac-
cessible over a network by remote suppliers. A developer of a SOA-based system should
only select the most appropriate services and coordinate them into business processes
that cover specification requirements for the system.

BPEL (Business Process Execution Language) [2] is a high level language that makes
it possible to implement business processes as an orchestration of web services. The

*dgrela@pk.edu.pl
fpesapiec@cyf-kr.edu.pl
fpestrug@cyf-kr.edu.pl

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Datar 12/01/2026 10:25:09

24

How validation can help in testing business processes...

orchestration consists in subsequent invoking the web services by a special element
of the process, called its coordinator. It leads to a very simple and structured SOA
where only the coordinator and communication links between the coordinator and the
services need to be tested. A correctness of the services may be assumed, as they are
provided as ready-to-use components and should be tested by their developers before
being shared.

Both, validation and testing may be performed with the help of test scenarios. In
[3, 4] a method of generation of test scenarios for validation of a BPEL process was
given. Test scenarios obtained by means of the method cover all functional requirements
for the process and provide high validation accuracy [4]. This paper presents a case
study that aims at answering a question to what extent such test scenarios are adequate
for testing an implementation of the process. To this end an experiment employing
Software Fault Injectior for BPEL Processes (SFIBP) was carried out and fault coverage
for the test scenarios was calculated.

The paper is organised as follows. In Section 2 a related work is briefly described.
In section 3 the problem is formulated. Section 4 defines fault coverage for the test
scenarios. Section 5 contains a description of a case study. The paper ends with
conclusions.

2 Related work

The problem of testing the SOA-based systems is not new, but most researchers
focused on test generation [5, 6, 7, 8, 9, 10, 11, 12]. Their works fall loosely into
two cathegories: developing efficient algorithms for selection of adequate tests [6, 7,
8, 9] and automation of the selection process [10, 11, 12]. Y. Yuan and Y. Yan
[6, 7] proposed the graph-based approaches to handle concurrency activities of BPEL
processes, in addition to basic and structured activities. Their approach was extended,
combined with other techniques and implemented by several other researchers [8, 9.
M. Palomo-Duarte, A. Garcia-Dominguez, and I. Medina-Bulo based their approaches
on the traditional white-box testing methods [10, 11, 12] and used formal methods
and hybrid approaches along with the ActiveBPEL [13]| and BPELUnit [14] test library
for generating tests. However, in the works there are not any studies concerning the
adequacy of generated tests for both validation and testing of BPEL processes.

The adequacy of tests can be measured with regard to some predefined metrics or
by injecting faults and observing whether they are detected or not [15]. Fault injec-
tion is a popular technique that has been alredy applied in the context of SOA-based
systems[16, 17, 18, 19|. The technique was often used for test generation [15]. PUP-
PET (Pick UP Performance Evaluation Test-bed) [16] is a tool for automatic generation
of test-beds to empirically evaluate the QoS [17] features of a Web Service under devel-
opment. GENESIS [18] generates executable web services from a description provided
by the user and provides an environment in which the services can be tested prior to
deployment in a production system. Another fault injection tool, WSInject [19], is a

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 12/01/2026 10:25:09
Damian Grela, Krzysztof Sapiecha, Joanna Strug 25

script-driven fault injector that is able to inject interface and communication faults.
WSInject works at the SOAP level and intercepts SOAP messages.

All of these approaches concern web-services or communication between a BPEL
process and web-services (i.e. a fault is injected when a Web service is invoked). In
the case of business processes various types of faults (e.g. replacement of input values)
may appear. Therefore, SFIBP should be easily configurable to inject a rich variety of
faults appearing in the very specific operational environment.

3 Problem statement

Validation aims to determine whether a software system satisfies requirements specifi-
cation or not [20]. Requirements specification defines, in a formal way, what the system
is expected to do. Test scenarios derived from such specification may be successfully
used for the validation. In [3] an effective method for generation of test scenarios for
validation of BPEL processes against specification requirements defined in SCR [21]
was given. However, specification requirements should not contain anything that is not
of interest for a user. Thus, test scenarios derived from the specification can check all
specified requirements, but not necessarily implementation details that are introduced
in further stages of development of the system. Therefore, the system should be tested
to detect implementation errors. As generation of tests is usually time consuming, it is
of high importance to find out to what extent the validation test scenarios are useful for
the testing. To this end, an experiment might be performed and the implementation
error coverage for the test scenarios could be calculated.

In general, the testing requires much more test scenarios than the validation. How-
ever, in the case of BPEL processes, which have very simple and well structured imple-
mentation, test scenarios limited to the validation may also be efficient. To measure
the coverage of implementation errors by the validation test set, Software Fault Injector
[22] for BPEL Processes will be applied. Implementation errors of BPEL process will
be simulated by injecting faults when the test is running.

4 Faults in the SOA-based systems

In the SOA-based systems faults may be caused by two reasons:

1. incorrect interaction between web-services, and
2. incorrect internal logic of the system components (web-services and/or coordinator).

Interaction faults affect communication between different web-services or between
the coordinator and the web-services. Internal logic errors are introduced by human
developers or production facilities when components of the system are implemented.
Eight types of interaction faults and four types of internal logic errors were identified
[23]. Three out of them concern the systems orchestrating web services. These are the
following:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:25:09

26 How validation can help in testing business processes......

1. Misbehaving execution flow. The fault occurs when a programmer invokes improper
web-service! (i.e. different from the specified one). Fig. 1 gives an example of an
improper web-service invocation error (a) and a faulty free version of the code (b).

<assign name="AssignTicketRS">
<copy>
<froem variable="inputVariable" part="payload"
query="/client:Eurc2012ProcessRequest/client:Data" />
<to variable="HotelBS_ Invoke getHotelBooking_ InputVariable"
part="parameters"
query="/ns2:getHotelBockingElement/ns2:Data" />
/copy>
</assign>
<invoke name="TicketRS5S Invoke" partnerLink="HotelBS Ws"
portType=“nsl?HctelBS_WS“ operation="getHotelBooking"
inputVariable="HotelBS_Invcke_getHotelBoocking_InputVariable"
ocutputVariable="HotelBS Invoke getHotelBooking OutputVariable"/>
<assign name="AssignResponse">
<copy>
<from variable="HotelBS Invoke getHotelBooking QutputVariable"
part="parameters" - L
query="/ns2:getHotelBoockingResponseElement/ns2:result" />
<to variable="Response"/>
</copy>

</assign> a

<assign name=
<copy>
<from variable="inputVariable" part="payload"
query="/client:Eurc2012ProcessRequest/client:Data"/>
<to variable="TicketRS_Invoke_ getTicketReservation_ InputVariable"
part="parameters"
query="/ns2:getTicketReservationElement/ns2:Data"/>
</copy>
</assign>
<invoke name="TicketRS5 Invoke" partnerLink="TicketRS Ws"
portType="nsl:TicketRS WS" operation="getTicketReservation"
inputVariable="TicketRE_Invoke_getTickﬂtRﬂservation_InputVntiable"
cutputVariable="TicketRS Invcoke getTicketReservation OutputVariable'/>
<assign name="AssignResponse"> - -
<copy>
<from variable="TicketRS_Invoke getTicketReservation_OutputVariable"
part="parameters"
query="/ns2:getTicketReservationResponseElement/ns2:result"/>
<to variable="Response"/>
</copy>
</assign>

"AssignTicketRS

Fig. 1. Improper (a) and correct (b) web service invocation.

2. Incorrect response. The fault is caused by incorrect processing, within a coordi-
nator, of correct response of a web-service (other causes related to incorrect interanal
logic of a web-service, as defined in [23], are not considered due to the assumption
of correctness of web-services). Incorrect processing means, that:

e a response from a wrong output port is used (Fig. 2),
e a response is assigned to a wrong variable (Fig. 3), or
e a response is not assigned at all (Fig. 4).

IThe invoked web-service should exist and the invocation should be correct with regard to the
specification of the web-service (otherwise such error will be reported by the compiler).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 12/01/2026 10:25:09
Damian Grela, Krzysztof Sapiecha, Joanna Strug 27

<invoke name="TicketRS Invoke" partnerLink="TicketRS WsS"

cutputVariable="TicketRS_Invoke_getTicketReservation_ OutputVariable"/>
<assign name="AssignResponse">
<copy>
<from variable="HotelBS_Invoke_getHotelBocking_ OutputVariable"
part="parameters"
query="/ns2:getHotelBockingResponseElement/ns2: result" />
<to variable="Response"/>

</copy>
</assign> a
<assign name="AssignResponse"> 13
<copy>

<from variable="TicketRS_Invoke getTicketReservation OutputVariable"
part="parameters"
query="/ns2:getTicketReservationResponseElement/ns2:result" />
<to variable="Response"/>
</copy>
</assign>

Fig. 2. A response from a wrong (a) and correct (b) output port.

<assign nam
<copy>
<from variable="TicketRS_Invoke getTicketReservation OutputVariable"
part="parameters"

="AssignResponse">

query="/ns2:getTicketReservationResponseElement /ns2:result" />
<to variable="Input"/>
</copy>
</assign> a
<assign name="AssignResponse"> 1)
<copy>
<from variable="TicketRS_Invoke getTicketReservation_OutputVariable"
par

guery="/ns2:getTicketReservationResponseElement/ns2:result"/>
<to wvariable="Response"/>
</copy>
</assign>

Fig. 3. A response is assigned to a wrong (a) and correct (b) variable.

<assign name="AssignResponse'>

</assign> a
<assign name="AssignResponse'> 1)
<copy>

<from variable="TicketRS_Invoke getTicketReservation OutputVariable"
part="parameters"
query="/ns2:getTicketReservationResponseElement/ns2:result" />
<to wvariable="Response"/>
</copy>
</assign>

Fig. 4. A response is not assigned at all (a) and is correctly assigned (b).

3. Parameter incompatibility. It occurs when a web-service receives, as an input
data, incorrect arguments or arguments of incorrect types. The following four errors
introduced into the implementation of a coordinator cause such a fault:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:25:09

28 How wvalidation can help in testing business...

a different operation of a web-service is invoked (Fig. 5). The operation should

belong to the web-service (otherwise such error will be reported by a compiler).

e a wrong input port is used (Fig. 6). The port used should be consistent with the
one that should be used (otherwise such error will be reported by a compiler).

e a wrong output port is used (Fig. 6), or

a wrong value is assigned to an input port (Fig. 7).

<invoke name="TicketRS Invoke" partnerLink="TicketRS WS"
portType="nsl:TicketRS WS" operation=" checkTicketReservation"

inputVariable="TicketRS_Invoke getTicketReservation_InputVariable"

outputVariable="TicketRS_ Invoke_ getTicketReservation_ OutputVariabl

<invoke name="TicketRS_ Invoke" partnerLink="TicketRS_Ws"
portType="nsl:TicketRS_WS" operation="getTicketReservation"
inputVariable="TicketRS Invoke getTicketReservation_InputVariable"
outputVariable="TicketRS Invoke getTicketReservation OQutputVariable"/>

Fig. 5. Different (a) and proper (b) operations of a web-service are invoked.

</assign>
<invoke nam icketRS_Invol partnerLink="TicketRS_WS"
portType="n TicketRS_WS" operation="getTicketReservation"
inputVariable="TicketRS_Invoke_checkTicketReservation InputVariable"

outputVariable="TicketRS_Invoke_ckeckTicketReservation OutputVariable"/>

<invoke name="TicketRS_Invoke" partnerLink="TicketRS_WsS"
portType="nsl:TicketRS_WS" operation="getTicketReservation"

inputVariable="TicketRS_Invoke_getTicketReservation_InputVariable"

outputVariable="TicketRS_Invoke_getTicketReservation_ OutputVariable"/>

Fig. 6. Wrong (a) and correct (b) input and output ports are used.

<assign name="AssignTicketR3S">
<copy>
<from variable="inputVariable" part="paylcad"
query="/client:Euro2012ProcessRequest/client: PESEL" />
<to variable="TicketRS Invoke getTicketReservation InputVariable"
part="parameters"
query="/ns2:getTicketReservationElement/ns2:Data"/>
</copy>
</assign>

<invoke nam

me="AssignTicketRS">

<copy>
<from variable="inputVariable" part="paylcad"
query="/client:Euro2012ProcessRequest/client:Data"/>
<to variable="TicketRS Invoke getTicketReservation InputVariable"
part="parameters" - B
query="/ns2:getTicketReservationElement/ns2:Data"/>

</copy>
</assign>
<invoke name="TicketRS Invoke" partnerLink="TicketRS_Ws"

Fig. 7. Wrong (a) and correct (b) values are assigned to an input port.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 12/01/2026 10:25:09
Damian Grela, Krzysztof Sapiecha, Joanna Strug 29

Effects of the faults are visible because the faults make the external behaviour of
the coordinator be different from the expected one. The cause-effect table is shown in

Fig. 8.
Implementation Faults Visible effects
Improper web-service
SRvocaton Misbehaving ——3p Accessing a service
A response from a wrong execution flow different than required
output port
A response is assigned to
a wrong variable
A response is not assigned 4
atall Incorrect | Passing of
L -
A different operation is response incorrect results
invoked
A wrong input port is
used \
A wrong output port is Parameter Passing of
used > incompatibility incorrect data
A wrong value is assigned /'
to an input port

Fig. 8. Implementation errors, interaction and development faults and their effects.

All other faults defined in [23] are not relevant for this work. These faults are either
related to a physical layer or caused by providers of web-services (incorrectness of
web-services or interaction between web-services).

5 Case study

The goal of the case study is to evaluate the adequacy of validation test scenarios for
testing BPEL processes. The test scenarios are evaluated based on their fault coverage
calculated with respect to the faults generated by the SFIBP. The SFIBP generates
the following three types of faults:

1. replacing web-service output parameters (OP),
2. replacing values of a web-service input parameters (IP),
3. replacing requested web-service with another one (WS).

The faults generated by SFIBP give the same observable effects as those described
in Section 4, but their injection does not require the implementation of a coordinator
to be changed.

The fault coverage for a set of test scenarios (FC) is expressed as a percentage of
detected faults to all injected faults.

_ FD

FC =—/-100%, where:
Fr

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Datar 12/01/2026 10:25:09

30

How walidation can help in testing business...

Fp — a number of detected faults,

Fr — a total number of injected faults.

As the faults are artificially generated and injected, their total number is known.
However, it is not possible to determine the number and the types of all errors that
might be the real source of the faults. Nevertheless, this is not shortcoming of the
approach because only the coverage has considerable meaning.

The subsequent subsections describe briefly SFIBP that was used in the experiment
to generate and inject faults (Section 5.1), an example system and test scenarios gen-
erated for the system (Section 5.2), and the experiment and its results (Section 5.3).

5.1 Software Fault Injector for the BPEL Processes

SFIBP is an execution-based injector [15], which is able to inject faults into the
BPEL processes when test scenarios are running.

The SFIBP has been implemented as a special local service that is invoked instead
of the proper web-service. Such approach helps reduce costs of the experiment, as the
faults are injected without changing the implementation of a coordinator. A configu-
ration file produced by the SFIBP defines three parameters of the proper web-services:

e identifiers of all methods provided by the web-services (ID),
e names of the methods,
e the number and names of parameters of the methods.

It also incudes predefined values of input and output parameters, values of alternative
web-services IDs that are used to generate faults and the probability that a fault will
be injected. Information about the injected faults is stored in a log file.

5.2 Football Reservation System

Football Reservation System (FRS) is a simple system allowing its users to book
tickets for football games, hotels to stay during the games and plane or train tickets to
arrive at the games.

The system was implemented as a BPEL process orchestrating five web-services.
Each of the services is accessible on a different server and the whole process of reser-
vation is coordinated through a central coordinator (Fig. 9).

Short descriptions of the web-services and their input and output parameters are
given in Table 1. Types of the parameters are placed in brackets next to the parameters
names.

A set of test scenarios generated for the system consists of 4 test scenarios having
between two and five input/output events. The total number of the events is 16. The
test scenarios were generated by means of the checking path method presented in [3].
Their usage provided high validation accuracy for the system.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:25:09

Damian Grela, Krzysztof Sapiecha, Joanna Strug

HotelBS
Client o Service
Service | | Football :
~— . TrainTR
Reservation Catlion
) E—
TicketRS k//; process

~— Service

Fig. 9. Service orchestration for a Football Reservation process.

Table 1
web-service o Parameters
D description
input output
retrieves data from the client
Client and sends information about Date [String] | Result [String]
order
checks an availability of a
TicketRS football ticket at the given Date [String] | Result [String]
date
checks an availability of a .)
HotelBS . Date [String] | Result [String]
hotel room at the given date
checks an availability of a train .)
TrainTR ; % Date [String] | Result [String]
at the given date
checks an availability of a .)
PlaneTR . ¥ Date [String] | Result [String]
plane at the given date

5.3 The experiment

The experiment consisted in:

1. implementing a fault free BPEL process for FRS and generating validation test
scenarios,

2. configuring the SFIBP,

3. starting the SFIBP and running the BPEL process with the test scenarios,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:25:09

32

How walidation can help in testing business...

4. comparing the outputs generated by the BPEL process with the expected ones given
by test scenarios,

5. saving the results,

6. calculating the fault coverage.

Steps 3, 4 and 5 were repeated 1000 times. At each of the iteration randomly generated
faults were injected into the BPEL process.

Table 2 shows the setting for all web-services of the FRS. The first row of the table
shows IDs of web-service. The next two rows show the values of output and input
parameters that are used to replace the proper ones when the faults are injected. IDs
of web-services that are invoked instead of the proper ones are shown in the last row.
The probability that a fault will occur was set to 33% for all faults.

Table 2
Web-service TicketRS HotelBS TrainTR PlaneTR
e s Ves” No” OK”. No” S Success”, STrue”,
output parameter | ,,Yes”, ,No g , »No Failure” False”
,2011-07- ,2011-07- ,,2011-07- ,2011-07-
267 2012- | 267,,2012- | 267,,2012- | 26”,,2012-
input parameter 01-017, 01-017, 01-017, 01-017,
,,2014-04- ,,2014-04- ,,.2014-04- ,,.2014-04-
04 04” 04” 04”
E— ,HotelBS”, | ,,TicketRS”, | , TicketRS”, | , TicketRS”,
o)b‘_s)mig _PlaneTR”, | ,PlaneTR”, | ,HotelBS”, | ,HotelBS”,
eomservice L, TrainTR” ,TrainTR” PlaneTR” ,TrainTR”

The outputs generated by TicketRS, HotelBS, TrainTR and PlaneTR depend on an
interval between a date of reservation and a date of football match. If the interval is
equal or longer than it was assumed, then the respective web-service generates positive
answer, otherwise the answer is negative. The intervals were set as follows: 15 days
for TicketRS, 5 days for HotelBS, 1 day for TrainTR and 30 days for PlaneTR. These
rules were introduced into the implementation of the web-services.

In the experiment the reservation date is an actual date (a day on which the process
was invoked) and the date of the football match is the date that was specified by the
user during the FRS invocation.

During the experiment the SFIBP could generate various combinations of the three
types of faults (Section 5) or not introduce any fault. This gives eight different config-
urations of faults for each of the web-services and about 4000 for the whole system.

At the end of the experiment its results were analyzed and the fault coverage for the
test scenarios was calculated. Table 3 summarises the results. It reports, for each of

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 12/01/2026 10:25:09
Damian Grela, Krzysztof Sapiecha, Joanna Strug 33

the web-services, the total number of fault injected, and detected. The fault numbers
were grouped based upon the type of faults.

Table 3

TicketRS HotelBS TrainTR PlaneTR
IP |OP| WS | IP |OP| WS | IP |OP| WS | IP | OP | WS
injected | 304 | 212 | 348 | 144 | 148 | 157 | 134 | 94 | 139 | 32 | 21 | 34
detecte
d
FC 197%(98% | 100%[97% | 98% | 100% | 98% | 98% | 100% | 97% | 95% | 100%

Faults

205|208 | 348 | 140|145 | 157 | 132 92 | 139 | 31 | 20 | 34

Due to the nature of the example majority of the injected faults is related to the
first web-service (TicketRS) and the minority of them to the last web-service (Plan-
eTR). Almost all injected faults were detected by the test scenarios. The average fault
coverage calculated based on the results of the experiments was 98%.

6 Conclusions

The paper describes a statistical experiment carried out to evaluate the test sce-
narios generated for validation of BPEL processes in context of testing the processes.
Test generation is a time consuming activity, thus the possibility of having one set of
tests scenarios providing accurate results for both validation and testing, was worth
investigating.

The experiment was performed on a small example orchestrating five web-services.
For the system, the SFIBP was able to generate three types of faults giving in total
4000 different fault configurations. For more complex systems the number of different
fault configurations may be much higher than for the FRS. That is why not exhaustive
but statistical testing was performed. It illustrates a general approach to the problem.

The experimental results seem very promising. The calculated fault coverage shows
that almost all injected faults (98%) were detected by the test scenarios. The results
confirmed the earlier assumptions that in the case of BPEL processes validation test
scenarios may be adequate, also when they are used for testing. Hence, it seems that
validation tests might give a strong support for testing. However, the experiment
was carried out only on one simple system and focused on faults that only simulate
implementation errors. More experiments are needed in order to make the conclusions
more general. This will be one of the main goals of our further research.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 10:25:09

34

How walidation can help in testing business...

(1]

[2

3

4

5

[6

[7

(8]
9

[10]

(11]

(12]

[13]
[14]

[15]
[16]

[17]

18]

[19]

[20]

References

Weerawarana S., Curbera F., Leymann F., Storey T., Ferguson D. F., Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More, Prentice Hall (2005).

Erl T., Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall PTR
(2005).

Sapiecha K., Grela D., Test scenarios generation for certain class of processes defined in BPEL
language, International Conference On Computer Science - Research and Applications, Annales
UMCS - Informatica 8(2) (2008): 75.

Sapiecha K., Grela D., Automating test case generation for requirements specification for processes
orchestrating web services, 10th International Conference on Enterprise Information Systems
(ICEIS), Information Systems Analysis and Specification 1 (2008): 381.

Beizer B., Software testing techniques (2nd ed.), Van Nostrand Reinhold Co., New York, NY,
USA (1990).

Yuan Y., Li Z., Sun W., A Graph-Search Based Approach to BPEL4WS Test Generation, Inter-
national Conference on Software Engineering Advances (2006).

Yan J., Li Z., Yuan Y., Sun W., Zhang J., BPELAWS Unit Testing: Test Case Generation Using
a Concurrent Path Analysis Approach, 17th International Symposium on Software Reliability
Engineering, ISSRE ’06 (2006).

Li Z. J., Tan H. F., Liu H. H., Zhu J., Mitsumori N. M., Business-process-driven gray-box SOA
testing, IBM Systems Journal 47 (2008): 457.

Liu C.-H., Chen S.-L., Li X.-Y., A WS-BPEL Based Structural Testing Approach for Web Ser-
vice Compositions, presented at the IEEE International Symposium on Service-Oriented System
Engineering (SOSE ’08) (2008).

Palomo-Duarte M., Garcia-Dominguez A., Medina-Bulo I., Takuan: A Dynamic Invariant Gen-
eration System for WS-BPEL Compositions, presented at the IEEE Sixth European Conference
on Web Services (ECOWS ’08) (2008).

Palomo-Duarte M., Garcia-Dominguez A., Medina-Bulo 1., Improving Takuan to Analyze a Meta-
Search Engine WS-BPEL Composition, presented at the IEEE International Symposium on
Service-Oriented System Engineering (SOSE ’08) (2008).

Palomo-Duarte M., Garcia-Dominguez A., Medina-Bulo 1., An architecture for dynamic invariant
generation in WS-BPEL web service compositions, presented at Proceedings of the International
Conference on e-Business (2008).

Contreras P., Zervas D., Murtagh F., ActiveBPEL Engine and ActiveBPEL Designer, Istanbul.
Consortium meeting. June 08 (2006).

Li Z. J., Sun W., BPEL-Unit: JUnit for BPEL Processes, Service-Oriented Computing (ICSOC
’06), Lecture Notes in Computer Science 4294 (2006): 415.

Sosnowski J., Testing and reliability in computer systems, EXIT, Warsaw (2005).

Reinecke P., Wolter K., Towards a Multi-Level Fault-Injection Test-bed for Service-Oriented, 27th
International Symposium on Reliable Distributed Systems, Napoli, Italy (2008).

Bertolino A., Angelis G.D., Polini A.,; A QoS Test-Bed Generator for Web Services, ICWE,
Lecture Notes in Computer Science 4607 (2007): 17.

Juszczyk L., Truong H.L., Dustdar S., Genesis - a framework for automatic generation and steering
of testbeds of complex web services, Proc. 13th IEEE International Conference on Engineering of
Complex Computer Systems ICECCS 2008, March 31 — April 3 (2008): 131.

Bessayah F., Cavalli A., Maja W., Martins E., Valenti A. W., A Fault Injection Tool for Testing
Web Services Composition, TAIC PART 2010, Windsor, UK, September (2010).

Tran E., Verification/Validation/Certification, Dependable Embedded Systems, Carnegie Mellon
University, Spring (1999).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 12/01/2026 10:25:09
Damian Grela, Krzysztof Sapiecha, Joanna Strug 35

[21] Heitmeyer C., Kirby J., Labaw B., The SCR Method for Formally Specifying, Verifying and
Validating Requirements: Tool Support , Pro c. of the International Conference on Software
Engineering (1997).

[22] Voas J., McGraw G., Software Fault Injection: Inoculating programs against errors, Edit. Wiley.
USA (1998).

[23] Chan K. S. M., Bishop J., Steyn J., Baresi L., Guinea S., A Fault Taxonomy for Web Service
Composition, ICSOC Workshops (2007): 363.

http://www.tcpdf.org

