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Abstract — The initial-boundary value problem for a convection-diffusion equa-
tion
ou ou Ie] ou
ar —=— 1|k a_ ) 7t S )
ot “or  ox ( (“)az> (@,1) € Qr

u(z,0) =ug(z), 0 <z <1, u(0,t) =pi(t), u(l,t) =p2(t), 0<t<T

is considered. The difference scheme, approximating this problem, is constructed. It is shown that

for traveling wave solutions the scheme is exact (EDS). The monotonicity of the scheme is also taken

into consideration. Presented numerical experiments illustrate the theoretical results investigated in

the paper.

1 Introduction

In constructing a difference scheme the main aim is to approximate an original prob-
lem with a prescribed accuracy in a finite number of operations. In this regard, the
question of the approximation order of the difference scheme arises at once. The order
of the approximation is desired to be as high as possible with a minimum number of

grid nodes in the pattern of a scheme at the same time. In some cases, the EDS can

be constructed.

Definition 1. A difference scheme is exact if the truncation error equals zero or

y = u at the grid nodes.
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Let us introduce the uniform grids @, = {z; =ih, i=0,...,N, hN =1}, w, =
w U{0} ={t, =nr, n=0,...,Nog, TNy =T}, @, = Wy, X W,. Here and after wy,, =
Q1 NWp,. In the paper we will use the following notation [1]

~ — +1/2
=yt y =l T=u T Y = oy (L= o)y, e = (y T — )/

Yo = i1 — ¥)/hy Yz = Wi — Yim1)/hy Yo = Wis1 — 2yi +vi—1)/h>.

Let C™(Qr) be the class of functions with m derivatives in z and n derivatives in ¢,
all necessary derivatives being continuous in the domain Q7 = Q7 U dQ7.
Contracting EDSs was, for example, discussed in [2, 3, 4, 5, 6]. In the papers by
R.E. Mickens certain rules for construction of the nonstandard finite difference schemes
are given. In [2] there were constructed EDSs from which the implementable truncated
difference schemes were derived. For the Cauchy problem
du

= = hi®fa(w), w=u(t), 0<t < T, u(0) = uo,

the following EDS can be constructed [7]

—1

n+1 n 1 i 1 e d
Y -y u 0
7 = t)dt , t € wr, = ug.
T T / fil®) yntl —yn / f(u) A
tn yn

In the above scheme the special Steklov averaging is used.

The authors have established that for the parabolic problems with travelling wave
solutions the EDS may be constructed [7, 8]. This paper refers to the travelling waves
which arise in many problems such as heat transfer, combustion, reaction chemistry,
fluid dynamics, plasma physics, soil-moisture, foam drainage, crystal growth, biolog-
ical population genetics, cellular ecology, neurology and synergy [9, 10]. This was
the motivation for constructing EDS for a convection-diffusion problem. The authors
took advantage of the equivalence of the convection-diffusion equation to the transport
equation for travelling wave solutions and constructed the difference scheme which can
be reduced to the EDS for transport problem in this special case. The main goal was to
construct the difference scheme which can be applied not only for a class of travelling
wave solutions but also for a wide class of solutions. The monotonicity of the scheme
was also an important question. For further investigation the corollary of the maximum
principle was used, which asserts that for a solution to the difference equation

Aiyi—l — Czyz +Biyi+1 =—F,i=1,...,.N—1, (1)
Yo = p1, Yn = p2,|Ai| #0, |Bi| #0,

the estimate

lylle < max {|u1l, |pe|,||F/Dlls} (2)
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is valid if D; = |C;| — | A4;| — |B;| > 0 [11]. The equation (1) can be rewritten in a more
general unified canonical form [11]
APy(P)= > BP.QuYQ+FP), Pew, 3)
QEPatt’(P)
where A(P), B(P,Q), F(P) are given grid functions, Patt’(P) = Patt(P)\ {P}, and
Patt is the difference pattern.

Definition 2. [11] The difference scheme (3) is monotone if A(P) > 0, B(P,Q) >0
for all P € w, Q € Patt'(P) and

D(P)=A(P)- > B(P.Q)>0.

QEPatt’(P)

The outline of this paper is as follows. In the first two sections the EDS for transport
problems are considered. On their basis the EDS for a convection-diffusion problem
is constructed in the next section and the approximation order is considered. The
numerical results are given and the future research directions are discussed.

2 Difference schemes for a homogenous transport equation

In the domain Qp = {(x,t): z€[0,l], t €[0,7]} let us consider the initial-
boundary value problem for a transport equation with a positive coefficient a > 0
ou ou
— — =0 t 4
3t+a8x a(xa)eQTa ()
u(x,O):uo(;L'), 0<z<l, U(O’t)::ul(t), u(lvt)::u‘Q(t)a 0<t<T, (5)
where Qr = {(z,t): = € (0,1], t € (0,7]}. It is well-known that the solution of the
problem (4) is a travelling wave

u(z,t) = U(x — at),

where a is the wave velocity and U(€) is the differentiable function [11].

In this section we review some of the difference schemes approximating the problem
(4) - (5) with particular reference to an exactness property. The difference schemes
introduced below are exact under the same condition connected with the Courant

number
vy =ar/h=1.
Let us begin with the well-studied explicit difference scheme [11, 12|
Yyt + ayz = 0, (6)
v = uo(z:), wi €Wn, Yy = paltngr), YnT = patni1), tngr € wr. (7)

This scheme is monotone and stable for v < 1. Another scheme [11, 12]

Yt + a:gz = 07 (8)
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is monotone and stable with a contrary condition ie. v = ar/h > 1. The above
schemes have the first order of approximation ) = O(r + h) for v # 1. The third
scheme approximating problem (4) - (5) is weighted simultaneously with respect to the
time and space and has the form

y(a)t + ayéo) = 07 Q,0 € [O’ 1] (9)

Here y(o) = ayi + (1 — a)yf* ;. This scheme is also exact under the condition v = 1,
but only for a special case of weights, ie. « + o = 1. It has the second order of
approximation O(72 + h?) for a = 0 = 0.5 and v # 1. Furthermore, it is monotone
and stable under the condition o + vo > max{vy,1} [13]. Now we deal with another
difference scheme weighted simultaneously with respect to the time and space

Yt + acyy +a(l —o)yz = 0. (10)

This scheme is a combination of the schemes (6) and (8). It is monotone and stable
for [8]

0, ify<1,i=1,...,N,
o=o0i(y)=4¢ 1, ify>1,i=0,
o1, ifoy,<o1 <1, v>1,i=1,...,.N—1, 0, =max{l/y,1—-1/~}.

This scheme is particularly important in view of next sections. Because of it, we will
recall the following lemmas.

Lemma 1. If y =1, then the difference scheme (10), (7) is exact.

PROOF. Multiplying equations (8) and (6) by o and 1 — o respectively, and adding
the obtained formulas, we get the equation (10). Thus scheme (10), (7) is also exact
for v = 1. O

Lemma 2. The approximation error of the difference scheme (10), (7) is

0, ify=1,
Y=< O(t?+h?), ife=05i=0,...,N—1, y#1,
O(T + h), ifo#05,i=0,...,N—1, v# 1.

ProOOF. Lemma 1 shows that 1 = 0 for v = 1. Now, let v # 1. The approxima-
tion error fulfills the relation

n ot ou R ot ou B
Y= —uy; + e +(1- O‘)a — aoly,; + i a(l —o)ug,; +a(l — U)a—x =

= P1; + g + V3,

where
ot ou
YL = —u Toe T (1- U)av
Py = —aoly ; + ao@, Y, = —a(l — o)ug,; + a(l — 0)@.

ox ox
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Our first goal is to estimate the error ¢7;. The difference operator u; has a Taylor
expansion of the form u;; = %—f + O(7?), so the approximation error 97, is

au ou ou

=7 tog+(1—0)5

V=g tog T -9y,

Next, let us estimate the error ¢%;. In view of the Taylor expansion 4, ; = gz + 5
O(h?), we have

+0(7?). (11)

h 8%a
2 0x2

h 8%a
Yy = GU§W+O( %). (12)
Analogously, we can show that
" h 0%u
v =a(l-0)5 5 +O(h?). (13)
The trick of the proof is to estimate the expression ¥5; + ¢5;. The key relation is
V(tnt1) = v(tn) + 70 (tn + 0p(tns1 — tn)), 0 <6, <1, 6, = const. (14)
The only, but crucial use of the above equality is that from (11) - (13) we obtain the
estimations
Y1 = (0 —0.5)T 8 —5 T O(T), (15)
82

W3+ 5 = —alo = 0.5)h=— + O(7? + h?). (16)

It is straightforward to show that the error of approximation is
Y = O((o — 0.5)(1 + h) + 72 + h?).

Thus, the difference scheme (10), (7) has the second order of approximation for o =
0.5. O

3 Difference schemes for a semilinear transport equation

In the domain @T consider a semilinear transport equation

——|—a——f1(a: t)fQ( ) f2(u)7é0’ (Jf,t) GQTa (17)

with the initial and boundary conditions (5). The difference scheme approximating the
above problem is [8]

Yei + aoy, T+ a( —0)yz; = 0pi + (1 —0)ey, (18)
) =uo(w), xi €@n, Yyt = p(tnr), YN = pa(tnga), tngr € wr, (19)
where
[ZY yi ! -
1 1 du
o=t / o (t), )t /  i(t) = at + 2,(0).
7 T ; ) ) y;z+1 _ y;a_l y f(u) [ 7
n i—1

It is exact for vy =1 [7, 8].
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If the integrals in the EDS cannot be evaluated exactly, to approximate them the
Euler-Maclaurin formula can be applied [14]. In this case, instead of EDS, we obtain
a difference scheme of an arbitrary order of accuracy.

Example. We consider the function u(z,t) = sin®(7(z —t))/(1 — tsin?(r(z — t)))
(see Fig. 1) that satisfies the problem (17), (5) in the domain Q, = [0, 1] x [0,0.9] with
a=1, fi =1 and fo(u) = u? [15]. The corresponding difference scheme is

Yri +oyntt+ (1 —o)yr, = oyiyl + 1 —o)y Yl

Fig. 1. The approximate solution for ¢ = 0.5, 7 = h = 0.01.

Table 1 presents the numerical results for time and space steps satisfying the condi-
tion 7 = 1 and demonstrates the exactness of the difference scheme.

Table 1. Numerical results for ¢ = 0.5 and v = 1.

hejr | max fly" — g
0.1 |0.1 6.94-10"18

0.01 | 0.01 2.78 1017

Table 2 presents the numerical results for the different time and space steps for which
v <1 and demonstrates the second order convergence of the difference scheme.

4 Exact difference scheme for a convection-diffusion in a
one-dimensional problem

In this section the convection-diffusion equation is considered and the difference
scheme is constructed. This scheme can be applied for a wide class of solutions but
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Table 2. Numerical results for ¢ = 0.5 and v # 1.

ho|r Jnax [ly" —u"lz
0.05 [ 0.09 2.33- 1070
0.01 [0.018 1.50 10~
0.005 | 0.009 3.82-10~%
0.001 | 0.0018 |  1.54-10"%

it is particularly important for travelling wave solutions. In this case the constructed
scheme is exact.

In the domain @ let us consider the boundary-value problem for the convection-
diffusion equation

% —&-a% = 5% (k:(u)g;b) , (x,t) € Qr, a >0, (20)
u(z,0) =up(z), 0 <z <lI, (21)
w(0,t) = pi(t), u(l,t) = pa(t), 0 <t < T, (22)

where 0 < ¢; < k(u) < co, ¢1, co = const, for u in the range of values of the exact
solution or its small neighborhood, i.e., v € Dj. Let us assume that the problem
(20) - (22) has a unique solution u € C3(Qr) satisfying the condition 0 < m; <
u(x,t) < ma, (z,t) € Qp, mi,ms = const, and all necessary derivatives exist and are
continuous and bounded. Moreover let us assume that k(u)/u € C*(Dy), (z,t) € Qr
has continuous and bounded derivatives. Here Qr = {(z,t): = € (0,1), t € (0,T]}.
Let us notice that the equation (20) can be rewritten in the equivalent form

% +a% = % (u&g;u)> coplu) = / k(;)dg' (23)

Uo

On the uniform grid @y, the problem (23), (21), (22) is approximated by the differ-
ence scheme with the weight

Yt +ayz; = aAyf+1 + (1 —0)A7y!, (zitn) € Whr, (24)
y? = uo(xi)v T € whv (25)
y{f“ = p1(tnt1), y;}“ = pa(tnt1), tnt1 € wr, (26)

where the operators A, A~ are given by the formulas

Ayi = WleWs),,» A vi= W)z, i=LN -1

It is worth to noticing here that the explicit scheme (o = 0) is also exact but unstable.
The experiments show that, when there is no restriction on the grid steps, the weighted
scheme (24) - (26) is unstable for o < 0.5.
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Let us denote the error of the method by z = y — u. Then the difference problem
for this error takes the following form

B R C
—o (" (U"“LP'(Z&H));)QU,i —o (ut! (ZnHSD/(ngH))z)m,z -

—(1=0) (2" ("¢ (253)) )5, — (1 = 0) (u" (2" (ugs)) g )z ; = ¥i's (%istn) € whr,

0 __ — n+l _ _n+l1 _
z; =0, x; €Wy, 2z =2y =0, thy1 € wr,
n+l _ _n+l n+1 n+1 n n+l _  n+l n+1 n+1 ) _
where 2914 = % + 07w, 23 = %' +03u;, ugy i = U+ 03 )y Uggi =

ul + 67,z and the approximation error is
1 —
Vi = —up i — aug; + oAul T+ (1 — o)A ul.

Here and after 0, = const, 0 <0, <1.
The considered scheme is monotone and stable in a linear approximation for 7 <
h?/(ah + 2b(1 — o)) and 0 < ¢ < 1. Moreover, it is also stable for ¢ > 1 and

aocr/h < 1. In this case the linear approximation is treated as a finite difference
(o)

T )

scheme y; + ayz = by~ , where a, b are the positive constants.

4.1 Approximation of the scheme (24) - (26)

First we prove the theorem on an order of approximation of the difference scheme

(24) - (26).

Theorem 1. The approximation error of the difference scheme (24) - (26) is O(h+
7).

PROOF. The approximation error of the difference scheme (24) - (26) satisfies the
relation

ou ou ou ou

wi:—um—l—aa—l—(l—a)at auz,; +a(l — )8— aaa—x—i—

0 (gl . 9 (8
ol — oo (u ‘g;“)> + (- o)A w— (1= 0) <u g;“)> _
= s + g + g + I,

where
n ou ou n ou ou
Y1i = Uit Oar T (1_0)815 Vg = aumﬁ—aa——«—a( )(.%
n_ ae 0 [ 0p(d) n _ . 0 ([ Op(u)
vy, = oAl — e (u 9 ) , Yh=0—-0)A"u; — (1 —o0) pe (u o )

It was shown in Lemma 2 that

827
Ul = (0 = 05)r 7 +O(r*).
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ou _ hdu

Next let us estimate the error 1%;. In view of the Taylor expansion uz; =

Ox 2 Ox? +
O(h?), after some tedious manipulations we have

0%u h 0%u
¢g.—aarata +a 232+O( 2 4 n?).

It remains to estimate 9%; and 9};. Let us substitute the Taylor expansion
(o(@). . = Op(i) | ho*p(a)  h* 0 p(a) 9*p(ie,,)

P ei = o0 T2 022 T Bl 08 4' ozt )’
. dp( h 0%p(1 h? 93 (1 0* (e,

(@), = (@) _ hd e@) b de@) 4' p(te,, ) ’

’ Ox 2 Ox2 3! Qa3 Ozt
Uey, = w(&riy tng1), &16 € (i, Tig1), ey, = u(€2i, tng1), E2i € (Tim1,24),

to the error 93,

i1 — U; » o 2 (=
= o (“H“ B 5U) op(a) , (Uz+1 + i _u> (@)

h ox ) Ox 2 Ox?
+h2e ( L. 83(p(ﬁ) + Uit 84@(/&511') + Uy 8450(’&‘521')) ]

ium’z ox3 4 Ozt 4  Ox*

Taking into account the following estimation and transformations

N 8u(§ tn+1 / auf tn+1
il = |3 / L

Z;

dé < max
(z,0)EQT

a. xat)‘a

ot ho*u Uig1 + U; h 04
+0(h?), gy =-—+O0(h?
Uei = g T 202 7O 2 =G ge T,
we are now in a position to estimate the error g,
= R O00p(@) | hOLOp(a)
2 02?2 Ox 20z 0x?
An argument similar to the one used above shows that
n h 9%u Op(u) h Ou 9*p(u)
Vi =~ = )28962 Ox ~( _0)5% Ox?
We use the relation (14) to obtain the estimations

0%u dp(u) = Ou d*p(u)
Yy, + 9L = (0 = 0.5)h (axQ o 97 022

Now, it is straightforward to show that the error of approximation is
U7 =O(r +h).
Thus, the difference scheme (24) - (26) has the first order of approximation. O

+O(h?).

+ O(h?).

) +O(r2 + h?).

Remark 1. A difference scheme of the second order O(72 + h?) of approximation
for « = 0 = 0.5 has the form

Yei aay"+1 +a(l—a)yz,; = UAy”Jrl +(1—-0)A7y!, a,0 €10,1]. (27)

For ao = 0 the above scheme reduces to the scheme (24). Scheme (27) is exact for the

travelling wave solutions under the conditions v = % = 1, a = 0. In this case the
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linear approximation is treated as a finite scheme y; + aag, +a(l — a)yz = by(a) where

T )
a,b are the positive constants, which is monotone and stable under two conditions:
ah/b < o/a, T < h?/(2b(1 — ) + ah(1 — «)). The first condition is connected with
the so-called Peclet number Pe = ah/b and for a wide class of problems imposes very
small grid steps. As a simple example, the convection-diffusion problem with the small
parameter, i.e., b < 1 can be considered.

Another way to increase the order of approximation and avoid the restriction on

the cell Peclet number at the same time is constructing a difference scheme with the

regularization
Yti + ﬂyf,i = RioAg; + k(1 —0)A7y;, 0< 0 <1, (28)
k(y:)
where x; = ﬁ’ R, = %, ¢; = 0.5(k(yi—1) + k(y;)). The approximation error of

the above scheme is O(7 + h?) for o = 0.5. For k(u) = b, the scheme (28) reduces to

Yei +ayz; = koAg; + k(1 —o)A7y;, 0 <o <1,

ﬁ, R = %. More information about the difference schemes with a

regularization can be found in [11].

with Kk =

4.2 The proof of the main result

In the present section the exactness of the scheme (24) - (26) will be considered.
First we will need the following lemma.

Lemma 3. For the travelling-wave solution u(z,t) = U(x — (a + ¢)t), a,¢c =
const, a+ ¢ > 0, of the equation (20) the following equality is fulfilled

o (@ (p(@)z),,; + (L= 0) (ulp(u),);,; = —colai — (1 - 0)uz,.

i

PROOF. First, let us notice that for the travelling wave solution u(x,t) = U(x —
(a + ¢)t) there follows

0 Jp(u))  Ou ou , ,  Ou
oz <“ ar ) "o Ty~ et U el =—cq
From the above equality we get
0
—_ — 2
5y (P(w) = —¢, (29)

Integrating the equation (29) for ¢t = t,,41 on the closed intervals [z;_1, ;] and [x;, 2;41]
we have

(v (ﬂ))fz =—c, (¢ (ﬁ))i)i+1 = —C.

3

After some tedious manipulation we obtain

(@ (o (@)z),,; = —Cla -

)
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In a similar way we get

Now it is straightforward to show that

o (@(p(@))z),,; + (1 =) (ul(p(u),);,; = —cola; —c(1 - o)ug,;.
O

The essential observation is that the above Lemma gives the condition on equivalence
of the convection-diffusion equation and the transport equation. In the next theorem
we give the condition under which the scheme (24) - (26) is exact.

Theorem 2. Ify = % = 1, then the difference scheme (24) - (26) is exact for
the travelling wave solution of the form u(x,t) = U(z — (a + ¢)t), a+¢ > 0.

PRrROOF. From Lemma 3 the following equality follows
Y= —uy; — coliy; — (a+ (1 — 0))ug,.
For v =1 we have
upht = Ui = (a+ )tayr) = Uz — (a + )ty) = uf,
and the approximation error satisfies the relationships

nﬁfCCTf’T n+1 0(3'7’7'”_’_176(1—0)’7',@ n_ Yo Y
i = ( h U; vy + n h u; + h U h Uu; h ui' 1)/7T+
+ (—ul +ul) /T = ((er/h— DulT + (1 — er/h)u} — ar/hul — at/hu}_,)/T
=((v=Dui 1 + A =y)ui)/T=0.

Hence, the difference scheme (24) - (26) is exact. O

c(l—o)r , ar at

Remark 2. For the travelling wave solutions u(z,t) = U(z — (a + ¢)t) under the
condition o = 0.5(a + ¢)/c the difference scheme (24) - (26) is equivalent to the scheme
(10) and its approximation error is

¢? = —Ut,; — 05(a + C)’LALIJ' — 05(0, + C)UT,ZW

Thus it has tthe second order of approximation for v # 1.
Remark 3. For an arbitrary sign of the coefficient a the following difference scheme

a—+ |a a— |a R _
Y + 2' e + 2‘ Ly = ahj+ (1—a)Ay
is still exact for the travelling wave solutions u(z,t) = U(x — (a + ¢)t) with v =

(c+a)T/h, c+a>0.
Remark 4. The scheme (24) - (26) is nonlinear even in the linear case and the
following iterative method is used for its implementation
s+

1
Yy -y +1
L gz =[5 (e + ') (- 9))

Tdx,i

} A+ (1—=o)A 7y
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. . . . s+1 5
The iteration process is terminated, when HTE — gj”c < € for some s = S. Then we

. S+1 . . S
advance to the next level with y;"'H = gJ/r 5 ©=1,..., N—1. The initial approximation

is taken from the explicit scheme (24) (o = 0).

4.3 Numerical experiment for a linear equation

In this section we carry out numerical experiments to illustrate the convergence of
the exact difference scheme for a linear convection-diffusion equation.
Consider the equation (20) with k(u) = b and b = const > 0 together with the input
conditions
u(x,()) — 670.5:57 U(O,t) — 6(0.5a+0‘25b)t7 u(l,t) _ 6(0.5a+0.25b)t70.51' (30)

The solution of this problem is u(x,t) = %-5((a+0:50)t=2) "Tp this case ¢ = 0.5b and the
considered scheme is exact for (a 4 0.50)7/h = 1. Moreover, for o = (2a +b)/(2b) and
(a+0.5b)7/h # 1 the scheme has the second order of approximation.

Table 3. 0 = 0.5, 0T — 1 q=p=1,1=T=1, e=1.0-10"".

h T Jaax ly" — u™|| | number of iterations
05 |0.3(3) 1.08 10~ 1 1
0.05 | 0.03(3) 3791017 2
0.005 | 0.003(3) 1551017 2
0.0005 | 0.0003(3) 1.35-10716 2

Table 4. o = 0.5, 0T £ g =p=1,1=T=1, e=1.0-10"1°.

h T max |ly™ — u"|| | number of iterations
0.1 0.1 1.15-107% 6
0.01 0.01 1.19-107% 4
0.001 | 0.001 1.19-1079° 3
0.0005 | 0.0005 5.96 - 1079 2

Table 5. 0 = (2a +b)/(2b), “H9T 21 a=b=1,1=T=1, e=1.0-10""°.

h T max |ly™ — u™||& | number of iterations
0.1 0.1 7.27-107% 7
0.01 0.01 7.43-107% 4
0.001 | 0.001 7.46-10710 2
0.0005 | 0.0005 1.86-10710 2

The number of iterations needed in the nonlinear scheme is sufficiently small.
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4.4 Numerical experiment for a nonlinear equation

In this section we carry out numerical experiments to illustrate the convergence of
the exact difference scheme for a nonlinear convection-diffusion equation.

Consider the equation (20) with k(u) = xou” and xo = const > 0, 3 = const > 0
together with the input conditions

u(x,0) =0, u(0,t) = b(D + a)t*’# D15,

1/p
u(l,t):{ OD71/@ ((D+ ) l) ’ l(; (D)':<)l ,b200ﬂ,8t>0, D = /Xobﬂ/ﬁ

The solution of this problem is

u(z,t) = o (D4 a)t — o) 0<z<(D+al,
) 0, x> (D + at,

In this case ¢ = D and the considered scheme is exact for (a + D)7/h = 1.

Fig. 2. The approximate solution for o = 0.5, 7 = 0.01, A = 0.02

Table 6. 0 = 0.5, “tP)T = 1 a=b=1xo=8=21=1 T =05,

e=1.0-10"1,
h T max ly" — u"||& | number of iterations
nEWr
0.1 0.05 9.76 - 10~ 19 1
0.01 | 0.005 4.39-10718 2
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5 Future research

In the future our research will focus on the two-dimensional case of the convection-
diffusion equation. The travelling wave solution will be still considered and the equiv-
alence to the transport equation will be crucial.

In the domain Q7 = Q x [0, T] let us consider the initial-boundary value problem for
a transport equation with the positive coefficients aj,as > 0

ou ou ou
E‘i‘alaixl“raQai@_Ov (Xat)EQX(OaT]’ (31)

u(x,0) = ug(x), x € Q, Ulyean = 9(x,1), (x,t) € 0Q x (0,77, (32)
where
OQ:{xGQ:xk:Q k':1,2} Q={x=(1,19): 0< 2 <1y, k=1,2} = QUIN.

Let us introduce the uniform grids @y, = {zx;: @k =the, i =0,..., Ng, hi Ny = i},
k=12, wy = Wh, X Why, Wh =w, NQ and Owy, = wy, N ON.

The following difference scheme approximating the problem (31) - (32) will be under
consideration [16, 4]

Yt + aly(uz)fl + a2y(u1)fg - 07 X € Wh, te Wr, (33)
y(x,0) = uo(Xx), X € Wn,  Ylxean = 9(x,1), (x,1) € Owp, X w. (34)

Here y(u,) = MYir,in + (1 = p1)¥ii—1,, and Yuy) = p2Yi i, + (1 — p2)¥i, -1 for
0 < py, 2 < 1. The scheme (33) - (34) is exact under conditions

pi+pe=1, n=v=1, vn=art/h, k=1,2.
It is monotone and stable under the condition

0 < pi,pe <1, max{yi,v2} < yipe +y2p1 < L.
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