Germination of different gyrogonite types of Chara intermedia A. Braun 1836

Ola Budnyk, Piotr Sugier, Zbigniew Cierech

Abstract


The paper presents the germination of different types of gyrogonites of Chara intermedia A. Braun 1836. The study material was collected from the surface layer of sediments (sediment gyrogonites) and from dead C. intermedia specimens inhabiting a post-excavation pit. As a result of a low level of water and seasonal drying, two morphological types of gyrogonites taken from the thallus were distinguished: fully ripe gyrogonites and gyrogonites in oosporangium remains. The highest germination rate was recorded for the sediment gyrogonites. At the end of the experiment, about 28% of germinating gyrogonites originating from sediments were observed. The value of this parameter was over 3-fold higher than that of fully ripe gyrogonites produced by the thallus and more than 5-fold higher in relation to gyrogonites in the oosporangium remains. The results of this experiment indicate that the germination of the two morphological types of gyrogonites taken from plants depends on the degree of their maturity and can take place under limited light conditions. Drying of charophyte thallus in shallow water bodies may have a significant impact on the degree of maturity of gyrogonites, their morphological differentiation, and sediment seed bank characteristics.

Keywords


germination, morphological types of gyrogonites, Chara intermedia, postexcavation pit

Full Text:

PDF

References


Blindow I. 1991. Reasons for the decline of Charophytes in eutrophicated lakes in Scania (Sweden). Extant and Fossil Charophytes. Bull. Soc. Bot. France 138: 95.

Blindow I. 1992. Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biol. 28: 9–14.

Bonis A., Grillas P. 2002. Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquat. Bot. 72: 235–248.

Brock M.A., Lane J.A.K. 1983. The aquatic macrophyte flora of saline wetlands in Western Australia in relation to salinity and permanence. Hydrobiologia 105: 63–76.

Casanova M.T. 1994. Vegetative and reproductive responses of charophytes to water-level fluctuations in permanent and temporary wetlands in Australia. Aust. J. Mar. Fresh. Res. 45: 1409–1419.

Casanova M. T., Brock M. A. 1990. Charophyte germination and establishment from the seed bank of an Australian temporary lake. Aquat. Bot. 36: 247–254.

Casanova M.T., Brock M.A. 1996. Can oospore germination patterns explain charophyte distribution in permanent and temporary wetlands? Aquat. Bot. 54: 297–312.

Casanova M.T, Brock M.A. 1999. Charophyte occurrence, seed banks and establishment in farm dams in New South Wales. Aust. J. Bot. 47: 437–444.

Casanova M.T., de Winton M.D., Clayton J.S. 2003. Do charophytes clear turbid water? Verh. Internat. Verein. Limnol. 26: 1440–1443.

Coops H. 2002. Ecology of charophytes: an introduction. Aquat. Bot. 72: 205–208.

Corillion R. 1957. Les Charophycées de France et d’Europe Occidentale Bulletin de la Société Scientifique de Bretagne 32: 1–259.

Corillion R. 1975a. Flore des Charophytes (Characées) du Massif Armoricain et des contrées voisines d’Europe occidentale. Flore et Végétation du Massif Armoricain Tome IV. Paris.

Dąmbska I. 1964. Charophyta – ramienice. Flora słodkowodna Polski. PWN, Warszawa.

De Winton M.D., Casanova M.T., Clayton J.S. 2004. Charophyte germination and establishment under low irradiance. Aquat. Bot. 79: 175–187.

Feist M., Grambast-Fessard N., Guerlesquim M., Karol K., Lu H., McCourt R. M., Wang Q., Zang S. 2005. Treatise on invertebrate paleontology, Part B., Protoctista 1, vol. 1: Charophyta. Geological Society of America and the University of Kansas Press, Lawrence KS: 175.

Forsberg C. 1965. Sterile germination of Chara and seeds of Najas marina. J. Plant Physiol. 18: 129–137.

García A., Chivas A.R. 2004. Quaternary and extant euryhaline Lamprothamnium Groves (Charales) from Australia: gyrogonite morphology and paleolimnological significance. J. Paleolimnol. 31: 321–341.

Grambast L.J. 1974. Phylogeny of the Charophyta. Taxon 23: 463–481.

Haas J.N. 1994. First identification key for charophyte oospores from central Europe. Eur. J. Phycol. 29: 227–235.

Henderson G.T. 1961. Some factors affecting oospore germination in Chara zeylanica Willdenow 39.

Horn af Rantzien H. 1956. Morphological terminology relating to female charophyte gametangia

and fructifications. Bot. Notiser 109: 212–259.

Kalin M., Smith M.P. 2007. Germination of Chara vulgaris and Nitella flexilis oospores. What are the relevant factors triggering germination? Aquat. Bot. 87: 235–241.

Krause W. 1981. Characeen als Bioindikatoren für den Gewässerzustand. Limnologica 13: 399–418.

Kufel L., Kufel I. 2002. Chara beds acting as nutrient sinks in shallow lakes – a review. Aquat. Bot. 72: 249–260.

Olsen S. 1945. The vegetation in Præstø Fjord, 1. Spermatophyta and charophyta. In K. Hansen (1953). Investigations of the geography and natural history of the Præstø Fjord, Zealand, Folia Geographica Danica. 3(4): 84–130.

Ozimek T. 2006. The possibility of submerged macrophyte recovery from a propagule bank in the eutrophic Lake Mikołajskie (North Poland). Hydrobiologia 570: 127–131.

Pełechaty M., Gąbka M., Sugier P., Pukacz A., Chmiel S., Ciecierska H., Kolada A., Owsianny P.M. 2009. Lychnothamnus barbatus in Poland: habitats and associations. Charophytes 2(1): 13–18.

Perrow M.R., Meijer M.L., Dawidowicz P., Coops H. 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343: 355–365.

Proctor V.W. 1967. Storage and germination of Chara oospores. J. Phycol. 3: 90–92.

Rodrigo M.A., Alonso-Guillen J.L., Soulié-Märsche I. 2010. Reconstruction of the former charophyte community out of the fructifications identified in Albufera de València lagoon sediments. Aquat. Bot. 92: 14–22.

Rodrigo M.A., Rojo C., Segura M., Alonso-Guillén J.L., Martín M., Vera P. 2015. The role of charophytes in a Mediterranean pond created for restoration purposes. Aquat. Bot. 120: 101–111.

Sabbatini M.R., Argüello J.A., Fernández O.A., Bottini R.A. 1987. Dormancy and growthinhibitor levels in oospores of Chara contraria A. Braun ex Kütz. (Charophyta). Aquat. Bot. 28: 189–194.

Schwarz A.M., Hawes I., Howard-Williams C. 1996. The role of the photosynthesis/light relationship in determining lower depth limits of Characeae in South Island. New Zealand lakes. Freshwater Biol. 35: 69–80.

Sederias J., Colman B. 2007. The interaction of light and low temperature on breaking the dormancy of Chara vulgaris oospores. Aquat. Bot. 87: 229–234.

Sokol R.C., Stross R.G. 1986. Annual germination window in oospores of Nitella furcata (Charophyceae). J. Phycol. 22: 403–406.

Sokol R.C., Stross R.G. 1992. Phytochrome mediated germination of very sensitive oospores. J. Plant Physiol.100: 1132–1136.

Soulié-Märsche I., Garciá A. 2015. Gyrogonites and oospores, complementary viewpoints to improve the study of the charophytes (Charales). Aquat. Bot. 120: 7–17.

Spence D.H.N. 1976. Light and plant response in fresh water. [In:] G.C. Evans. R. Bainbridge, O. Rackham. (eds). Light as an Ecological Factor: II, Blackwell Scientific Publications. Oxford: 93–133.

Stobbe A., Gregor T., Röpkea A. 2014. Long-lived banks of oospores in lake sediments from the Trans-Urals (Russia) indicated by germination in over 300 years old radiocarbondated sediments. Aquat. Bot. 119: 84–90.

Stross R.G. 1989. The temporal window of germination in oospores of Chara (Charophyceae) following primary dormancy in the laboratory. New Phytol. 113: 491–495.

Sugier P. 2014. Ecological Processes and Properties of Excavated Peatlands of Eastern Poland. Towarzystwo Wydawnictw Naukowych LIBROPOLIS. Lublin, 170.

Sugier P., Pełechaty M., Gąbka M., Owsianny P. M., Pukacz A., Ciecierska H., Kolada A. 2009. Lychnothamnus barbatus: global history and distribution in Poland. Charophytes 2(1): 19–24.

Takatori S., Imahori K. 1971. Light reactions in the control of oospore germination of Chara delicatula. Phycologia 10: 221–228.

Urbaniak J., Sugier P., Gąbka M. 2011. Charophytes of the Lubelszczyzna Region (Eastern Poland). Acta Soc. Bot. Pol. 80(2): 159–168.

Van den Berg M.S., Scheffer M., Coops H., Simons J. 1998. The role of characean algae in the management of eutrophic shallow lakes. J. Phycol. 34: 750–756.

Van den Berg M.S., Scheffer M., van Nes E.H., Coops H. 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 408: 335–342.

Van Donk E., van de Bund W.J. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72: 261–274.

Wang H.Yu.D., Xiao K. 2008. The interactive effects of irradiance and photoperiod on Chara vulgaris L.: concerted responses in morphology, physiology, and reproduction. Hydrobiologia 610: 33–41.

www.en.tutiempo.net




DOI: http://dx.doi.org/10.17951/c.2016.71.2.49
Date of publication: 2018-02-21 08:04:04
Date of submission: 2017-09-22 15:25:30


Statistics


Total abstract view - 1271
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Ola Budnyk, Piotr Sugier, Zbigniew Cierech

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.