Morphophysiological and biochemical response of savory medicinal plant using silicon under salt stress

Hamid Mohammadi, Saeid Hazrati, Laleh Parviz

Abstract


Salt stress is one of the most important factors limiting the growth and yield of plants around the world. However, silicon can reduce the harmful effects of salt stress on plants. For this purpose, an experiment was conducted in a factorial arrangement on randomized complete block design with three replications in a research greenhouse on the Satureja hortensis medicinal plant. Experimental treatments consisted of two salinity levels (control and 100 mM) and potassium silicate (Si) at three levels (0, 1, and 2 mM). The results showed that salinity reduced shoot dry weight, photosynthetic pigments and potassium content of shoot. However, sodium, proline, MDA, and H2O2 contents in shoot increased. The highest shoot dry weight, photosynthetic pigment content, proline, RWC, and the lowest content of MDA and H2O2 of the shoot were observed with Si application under salt stress and non-salt stress conditions. The highest yield of essential oil was also observed with Si application under salt stress and non-salt stress conditions. Therefore, the use of silicon in salt stress condition not only minimizes the harmful effects of salt stress by increasing the K+/Na+ ratio and improving the morphological and physiological traits of the Satureja hortensis medicinal plant but also improves the essential oil yield of this medicinal plant in salt stress and non-salt stress conditions.


Keywords


salinity stress tolerance, Satureja hortensis, ion status, silicon

Full Text:

PDF

References


Abbas T., Balal R.M., Shahid M.A., Pervez M.A., Ayyub C.M., Aqueel M.A., Javaid M.M. 2015. Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol. Plant, 37: 1–15.

Abdalla M.M. 2011. Beneficial effects of diatomite on growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agric. Biol. J. N. Am., 2: 207–220.

Adorjan B., Buchbauer G. 2010. Biological properties of essential oils: an updated review. Flavour Fragr. J. 25: 407–426.

Ali A., Basra S.M., Ahmad R., Wahid A. 2009. Optimizing silicon application to improve salinity tolerance in wheat. Soil Environ., 2: 136–144.

Ashraf M., Orooj A. 2006. Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J. Arid Env., 64(2): 209–220.

Aziz E.E., Al-Amier H., Craker L.E. 2008. Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. J. Herbs Spices Med. Plants, 14: 77–87.

Baghalian K., Haghiry A., Naghavi M.R., Mohammadi A. 2008. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Scientia Hort., 116: 437–441.

Baher Z.F., Mirza M., Ghorbanli M., Bagher Rezaii M. 2002. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Frag. J. 17: 275–277.

Ball M.C., Anderon J.M. 1986. Sensitivity of photosystem II to NaCl in relation to salinity tolerance. Comparative studies with thylakoids of the salt-tolerant mangrove, Avicennia marina, and the salt-sensitive pea, Pisum sativum. Australian Journal of Plant Physiology, 13: 689–698.

Barr H., Weatherley P. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci., 15: 413–428.

Bates L., Waldren R., Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205–207.

Bayuelo-Jimens J.S., Debouk D.G., Plynch J. 2003. Growth, gas exchange, water relations and ion composition of Phaseolus vulgaris L. under saline conditions. Field Crop Res., 80: 207–222.

Chen D., Yin L., Deng X., Wang S. 2014. Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). Acta Physiol. Plant., 36: 2531–2535.

Colmer T.D., Munns R., Flowers T.J. 2005. Improving salt tolerance of wheat and barley: future prospects. Aust. J. Exp. Agric., 45: 1425–1443.

Davazdah Emami S., Mazaheri D. 2009. Effect of salinity on qualitative and quantitative characteristics of Carum copticum. Iranian Journal of Medical Plant, 4: 504–512.

Delauney A.J., Verma D.P. 1993. Proline biosynthesis and osmoregulation in plants. Plant J., 4: 215–223.

Esechie H.A., Rodriguez V. 1999. Does salinity inhibit Alfalfa leaf growth by reducing tissue concentration of essential mineral nutrition?. J. Agronomy & Crop Science, 182: 273–278.

Ezz El-Din A.A., Aziz E.E., Hendawy S.F., Omer E.A. 2009. Response of Thymus vulgaris L. to salt stress and alar (B9) in newly reclaimed soil. J. Appl. Sci. Res., 5: 2165–2170.

Fahad S., Hussain S., Matloob A., Khan F.A., Khaliq A., Saud S., Huang J. 2015. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul., 75(2): 391–404.

Farzaneh M., Kiani H., Sharifi R., Reisi M., Hadian J. 2015. Chemical composition and antifungal effects of three species of Satureja (S. hortensis, S. spicigera, and S. khuzistanica) essential oils on the main pathogens of strawberry fruit. Postharvest Biol. Technol., 109: 145–151.

Ford C.W. 1984. Accumulation of low molecular weight solutes in water stress tropical legumes. Phytochemistry, 22: 875–884.

Garg N., Bhandari P. 2016. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul., 78(3): 371–387.

Gurmani A.R., Bano A., Najeeb U., Zhang J., Khan S.U., Flowers T.J. 2013. Exogenously applied silicate and abscisic acid ameliorates the growth of salinity stressed wheat (Triticum aestivum L.) seedlings through Na+ exclusion. Aust. J. Crop Sci., 7: 1123–1130.

Gursoy U.K., Gursoy M., Gursoy O.V., Cakmakci L., Könönen E., Uitto V.J. 2009. Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens. Anaerobe, 15: 164–167.

H adian J., Ebrahimi S.N., Salehi P. 2010. Variability of morphological and phytochemical characteristics among Satureja hortensis L. accessions of Iran. Ind. Crop Prod., 32: 62–69.

H ajiboland R., Cheraghvareh L. 2014. Influence of Si supplementation on growth and some physiological and biochemical parameters in salt-stressed tobacco (Nicotiana rustica L.) plants. J. Sci. Islam. Rep. Iran, 25: 205–217.

H eath R.L., Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophysic., 125: 189–198.

H ellal F.A., Abdelhameid M., Abo-Basha D.M., Zewainy R.M. 2012. Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vicia faba L.). J. Appl. Sci. Res., 8: 4428–4433.

H endawy S.F., Khalid K.A. 2005. Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. J. Appl. Sci. Res., 1: 147–155.

Imlay J.A. 2003. Pathways of oxidative damage. Ann. Rev. Microbiol., 57: 395–418.

Ismail A.M., Heuer S., Thomson M.J., Wissuwa M. 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol., 65: 547–570.

Jeschke W.D. 1979. Univalent cations selectivity and compartmentation in cereals. In: Leidman D.L., Gwyn Jones R. (Ed.), Recent Advances in the Biochemistry of Cereals. Academic Press Inc., pp. 37–61.

Jones A. 2000. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trend Plant Sci., 5: 225–230.

Kafi M., Rahimi Z. 2011. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Sci. Plant Nutr., 57: 341–347.

Khan M.G., Silberbush M., Lips S.H. 1998. Physiological studies on salinity and nitrogen interaction in alfalfa. II. Photosynthesis and transpiration. Journal of Plant Nutrition, 17(4): 669–682.

Kim Y.H., Khan A.L., Waqas M., Shim J.K., Kim D.H., Lee K.Y., Lee I.J. 2014. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J. Plant Growth Regul., 33: 137–149.

Li H., Zhu Y., Hu Y., Han W., Gong H. 2015. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol. Plant., 37: 1–9.

Liang X., Wang H., Hu Y., Mao L., Sun L., Dong T., Nan W., Bi Y. 2015. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission. Plant Cell Rep., 34: 331–343.

Lichtenthaler H.K., Wellburn A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soci. Trans., 11: 591–592.

Liu P., Yin L., Wang S., Zhang M., Deng X., Zhang S., Tanaka K. 2015. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ. Exp. Bot., 111: 42–51.

Maiti R.K., Rosa M., Gutierrez L.A.A., De La Roza M. 1994. Evaluation of several sorghum genotypes for salinity tolerance. Intern. Sorghum Millerts Newsl. 35: 121.

Majnoon Hosseini H., Davazdahemami S. 2008. Agriculture and generate some herbs and spice. Tehran University Press, pp. 300.

Marschner H. 1995. Mineral Nutrition of Higher Plants. Academic Press, pp. 200–255.

Martini H., Weidenbörner M., Adams S., Kunz B. 1996. Eugenol and carvacrol: the main fungicidal compounds in clove and savory. Ital. J. Food Sci. 8: 63–67.

Mateos-Naranjo E., Andrades-Moreno L., Davy A.J. 2013. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol. Biochem., 63: 115–121.

Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ., 25(2): 239–250.

Neffati M., Marzouk B. 2008. Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind. Crops Prod., 28: 137–142.

Piri E., Harati A., Tavassoli A., Babaeian M. 2017. Effect of using different levels manure on quality and quantity of Rosemary (Rosmarinus officinalis L.) under salt stress condition. Journal of Crop Ecophysiology, 10(4): 959–974.

Razghandi J. 2014. Effect of salinity stress on morphological and physiological characteristics of five summer savory populations. Thesis in Ferdosi Mashhad University, Mashhad, Iran. 50. Said-Al Ahl H.A.H., Omer E.A. 2011. Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, 57: 72–87.

Sefidkon F., Abbasi K., Khaniki G.B. 2006. Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem., 99: 19–23.

Selmar D., Kleinwächter M. 2013. Stress enhances the synthesis of secondary plant products: the impact of the stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol., 54: 817–26.

Soylemezoglu G., Demir K., Inal A., Gunes A. 2009. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci. Hortic., 123: 240–246.

Strogonov B.P., Kabanov V.V, Shevajakova N., Lapine L.P., Kamizerko E., Popov B.A., Dostonova R.K., Prykhodko L.S. 1970. Structure and Function of Plant Cells in Saline Habitats. John Wiley and Sons, New York.

Svoboda K., Greenaway R. 2003. Investigation of volatile oil glands of Satureja hortensis L. (summer savory) and phytochemical comparison of different varieties. Int. J. Aromatherapy, 13: 196–202.

Valliyodan B., Nguyen H.T. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol., 9: 1–7.

Velikova V., Yordanov I., Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci., 151: 59–66.

Vranová E., Inzé D., Van Breusegem F. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53: 1227–1236.

Wang X., Wei Z., Liu D., Zhao G. 2011. Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. Afr. J. Biotechnol., 10: 545–549.

Xie Z., Song R., Shao H., Song F., Xu H., Lu Y. 2015. Silicon improves maize photosynthesis in saline-alkaline soils. Sci. World J. Article ID., 245072.

Y in L., Wang S., Li J., Tanaka K., Oka M. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol. Plant., 35: 3099–3107.

Zargari A. 1999. Medicinal Plants, V. 3, 6th ed, Tehran University, Iran.




DOI: http://dx.doi.org/10.17951/c.2017.72.2.29-40
Date of publication: 2019-01-07 08:24:08
Date of submission: 2019-01-04 14:43:39


Statistics


Total abstract view - 1456
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Hamid Mohammadi, Saeid Hazrati, Laleh Parviz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.