The Impact of AI-Driven Product Creation on Customer Value Perception: A Preliminary Study
Abstract
Theoretical background: Individual assessments and customer preferences play a crucial role in determining the subjective perception of the value of a product or service. A prime example is the emotions experienced by customers when evaluating modern technologies, their concerns about these technologies and, consequently, their attitudes toward products or services produced using them. The perception of technology and the awareness of its use in the product creation process can lead to the depersonalization of a company and a decrease in the perceived value of its products, even if they possess competitive attributes such as quality and price.
Purpose of the article: This study aims to determine how knowledge about the use of intelligent technologies in the production of goods or services influences the personal beliefs of potential customers regarding the value assessment of such products and services compared to their human-made counterparts.
Research methods: A pilot study was conducted using a computer-assisted web interview (CAWI) questionnaire administered through the Biostat research panel. The sample consisted of a non-randomly selected nationwide group of respondents (n = 386). For statistical analysis, non-parametric methods such as the Chi-square test, Kruskal–Wallis test, and Dunn’s post-hoc test were employed.
Main findings: Knowledge about the use of artificial intelligence (AI) in creating a product or service influences the customer’s value assessment of that product. Demographic variables do not play a significant role in this process; however, most respondents believe that the use of AI in creating a product or service negatively impacts its perceived value. Furthermore, the majority of customers would choose a product created by a human over one produced using intelligent technology, solely based on the awareness that AI was involved in its production.
Keywords
Full Text:
PDFReferences
Aggarwal, P., & McGill, A.L. (2007). Is that car smiling at me? Schema congruity as a basis for evaluating anthropomorphized products. Journal of Consumer Research, 34(4), 468–479.
Alsheibani, S.A., Cheung, Y., Messom, C.H., & Alhosni, M. (2020, August). Winning AI strategy: Six-steps to create value from artificial intelligence. AMCIS Proceedings, 11, 1–10.
Anderson, J.C., Jain, D.C., & Chintagunta, P.K. (1993). Customer value assessment in business markets: A state-of-practice study. Journal of Business to Business Marketing, 1(1).
Butz, H.E., Jr., & Goodstein, L.D. (1996). Measuring customer value: Gaining the advantage. Organizational Dynamics, 24(3), 63–77. https://doi.org/10.1016/S0090-2616(96)90006-6
Cagan, J., & Vogel, C.M. (2002). Creating Breakthrough Products: Innovation from Product Planning to Program Approval. FT Press.
Cho, E. (2020). A comprehensive review of so-called Cronbach’s alpha. Journal of Product Research, 38(1), 9–20.
Davenport, T.H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
Digital Poland. (2023). Technologia w służbie społeczeństwu. Czy Polacy zostaną społeczeństwem 5.0?. https://digitalpoland.org/publikacje/pobierz?id=361d97e9-ca5e-4614-afd9-d9d506c66033
Dobiegała-Korona, B. (2006). Wartość klienta czy wartość dla klienta?. Kwartalnik Nauk o Przedsiębiorstwie, 1, 29–33.
Dobiegała-Korona, B. (2010). Istota i pomiar wartości klienta. In B. Dobiegała-Korona, T. Doligalski (Eds.), Zarządzanie wartością klienta: pomiar i strategie (pp. 21–44). Poltext.
Dobiegała-Korona, B., Doligalski, T., & Korona, B. (2004). Konkurowanie o klienta e-marketingiem. Difin.
Drucker, P. (1994). Praktyka zarządzania. Wyd. Akademii Ekonomicznej w Krakowie.
Duan, Y., Edwards, J.S., & Dwivedi, Y.K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71.
Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M.D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Dział Analiz Strategicznych PW. (2023). https://das.pw.edu.pl/Raporty-i-publikacje/Zrozumiec-badania-spoleczne/Skala-Likerta-cz.-1-metodologia
Enholm, I.M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24(5), 1709–1734. https://doi.org/10.1007/s10796-021-10186-w
EY Polska. (2025). Co to jest pokolenie Z? Charakterystyka nowej generacji pracowników i konsumentów. https://www.ey.com/pl_pl/workforce/pokolenie-z-co-to-jest#:~:text=pokolenie%20BB%20(często%20nazywana%20mianem,urodzeni%20w%20latach%201995%2D2012
Falencikowski, T. (2017). Modele budowy wartości dla klienta – charakterystyka i rozwinięcie. Handel Wewnętrzny, 368(3/1), 91–98.
Fountaine, T., McCarthy, B., & Saleh, T. (2019). Building the AI-powered organization. Harvard Business Review, 97(4), 62–73.
Gale, B. (1994). Managing Customer Value: Creating Quality and Service That Customers Can See. Simon and Schuster.
Garvey, A.M., Kim, T., & Duhachek, A. (2023). Bad news? Send an AI. Good news? Send a human. Journal of Marketing, 87(1), 10–25.
Gashenko, I.V., Khakhonova, N.N., Orobinskaya, I.V., & Zima, Y.S. (2020), Competition between human and artificial intellectual capital in production and distribution in Industry 4.0. Journal of Intellectual Capital, 21(4), 531–547. https://doi.org/10.1108/JIC-11-2019-0275
Graf, A., & Maas, P. (2008). Customer value from a customer perspective: A comprehensive review. Journal für Betriebswirtschaft, 58, 1–20. https://doi.org/10.1007/s11301-008-0032-8
Haghkhah, A., Rasoolimanesh, S.M., & Asgari, A.A. (2020). Effects of customer value and service quality on customer loyalty: Mediation role of trust and commitment in business-to-business context. Management Research & Practice, 12(1).
Holbrook, M.B. (1999). Consumer Value. A Framework for Analysis and Research. Routledge.
Kotler, P., Kartajaya, H., & Setiawan I. (2010). Marketing 3.0. Dobry produkt? Zadowolony klient? Spełniony człowiek? MT Biznes.
Lance, C.E., Butts, M.M., & Michels, L.C. (2006). What did they really say? Organizational Research Methods, 9(2), 202–220. https://doi.org/10.1177/109442810528491
Lipowski, M. (2015). Service bundling from the perspective of the customer. Annales Universitatis Mariae Curie-Skłodowska, sectio H – Oeconomia, 49(3), 109–116. http://dx.doi.org/10.17951/h.2015.49.3.109
Lipowski, M. (2017). The differences between generations in consumer behavior in the service sales channel. Annales Universitatis Mariae Curie-Skłodowska, sectio H – Oeconomia, 51(2), 159–167. http://dx.doi.org/10.17951/h.2017.51.2.159
Longoni, C., Bonezzi, A., & Morewedge, C.K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629–650.
Łada, M. (2011). Pomiar ekonomiczny zorientowany na relacje z klientami we współczesnej rachunkowości. Wyd. Uniwersytetu Ekonomicznego w Katowicach.
Łada, M., & Ziarkowski, P. (2017). Analiza przydatności modeli wartości dla klienta w zarządzaniu usługami finansowo-księgowymi. Studia Ekonomiczne, 341, 210–219.
Mahajan, G. (2020). What Is Customer Value and How Can You Create It? Journal of Creating Value, 6(1), 119–121. https://doi.org/10.1177/2394964320903557
Makarius, E.E., Mukherjee, D., Fox, J.D., & Fox, A.K. (2020). Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. Journal of Business Research, 120, 262–273.
McKinsey & Company. (2025). The STATE of AI in Early 2024. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
Monroe, K.B. (1990). Pricing: Making Profitable Decisions. McGraw-Hill.
Nunnally, J.C. (1978). Psychometric Theory. McGraw-Hill.
Porter, M.E. (1985). Technology and competitive advantage. Journal of Business Strategy, 5(3), 60–78.
Rakowska, A.A. (2022). Human-robot interactions in the workplace – key challenges and concerns. Annales Universitatis Mariae Curie-Skłodowska, sectio H – Oeconomia, 56(1), 95–106. http://dx.doi.org/10.17951/h.2022.56.1.95-106
Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence: Closing the gap between ambition and action. MIT Sloan Management Review, 59(1).
Slywotzky, A.J., Morisson, D.J., & Andelman, B. (2000). Strefa zysku. PWE
Stabell, C.B., & Fjeldstad, Ø.D. (1998). Configuring value for competitive advantage: On chains, shops, and networks. Strategic Management Journal, 19(5), 413–437.
Szymura-Tyc, M. (2005). Marketing we współczesnych procesach tworzenia wartości dla klienta i przedsiębiorstwa. Wyd. Akademii Ekonomicznej w Katowicach.
Wodecki, A. (2018). Sztuczna inteligencja w kreowaniu wartości organizacji. edu-Libri.
Woodruff, R.B. (1997). Customer value: The next source for competitive advantage. Journal of the Academy of Marketing Science, 25, 139–153.
Zeithaml, V.A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2–22.
Zupok, S. (2018). Wartość dla klienta a cele organizacji. Studia i Prace WNEiZ US, 53(3), 77–88. https://doi.org/10.18276/sip.2018.53/3-07
DOI: http://dx.doi.org/10.17951/h.2025.59.5.155-175
Date of publication: 2026-01-27 15:17:52
Date of submission: 2024-10-21 01:38:48
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Mirosław Wójcik

This work is licensed under a Creative Commons Attribution 4.0 International License.