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Introduction: Sometimes the mapping of the variable values made during the measurement 
needs to be transformed due to the conditions related to the data analysis. 
Research Aim: The aim of this article is to present the issue of normalization transformations 
and the circumstances of their application.
Evidence-based Facts: Due to lack of knowledge or experience, transformations are not tak-
en into account in data analysis in education research. And if they do occur, among the most 
popular methods of data transformation, are chosen those which reduce the skewness of distri-
butions. However, the method of transformation is not always chosen adequately to the prop-
erties of the data and the conditions of analysis. Normalization transformations are among the 
simpler yet effective solutions for preparing data for analysis. 
Summary: Normalization transformations minimize the risk of artifacts due to differences in 
orders of magnitude and units of measurement. This is particularly important when conducting 
analyses using multidimensional scaling and multivariate classification methods.

Keywords: data transformations, normalization, statistical methods.

INTRODUCTION

The empirical data collected is a representation of the values of the variable or 
variables that have been observed. The quality of this representation depends 
mainly on such factors as sampling error, method error, measurement error, or 
measurement scale. The last of these factors is responsible for the form and qual-
ity of the representation of variable values in the set of symbols that are their 

*1 Suggested citation: Pasikowski, S. (2022). Normalization Transformations of Data in the Pro-
cedure of Statistical Methods Used in Education Research. Lubelski Rocznik Pedagogiczny, 41(4), 
91–101. http://dx.doi.org/10.17951/lrp.2022.41.4.91-101
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representations. Variable values can be carried out in a set of numbers, or a set 
of symbols other than numbers. This process is described in detail by the mathe-
matical theory of functions and the theory of category. Sometimes the mapping of 
variable values made during measurement requires transformation due to condi-
tions related to data analysis (cf. Tabachnick and Fiedel, 2013; Tinsley and Brown, 
2000; Venter and Maxwell, 2000). Transformation of a dataset is a map of this set 
onto itself, but in the other system of symbols, and the conditions mentioned in-
clude meeting the assumptions of analysis methods in terms of the properties of 
the distribution of the variable, unifying orders of magnitude and units of meas-
urement, linearization of non-linear models. Without consideration of these con-
ditions, erroneous results of the analysis are obtained, but it also happens that the 
conduct of the analysis becomes seriously complicated due to the limited com-
parability of the variable distributions under study. Among the simplest trans-
formations is translation, which involves either adding or subtracting a constant 
value from each observation in the data set so that a tidy reference point, such 
as the arbitrary point 0, is obtained. However, the transformations used in data 
analysis in social research are associated with misunderstandings over the issue 
of the form of transformations and the circumstances of their application. There-
fore, the purpose of this article is to provide an overview of this issue. Due to the 
breadth of the topic, the focus of this article will be on normalization transforma-
tions (in a broad sense), since they are the ones that usually secure the possibility 
of conducting multivariate analyses by meeting the condition of comparability of 
variable distributions, but also facilitate the performance of operations on data 
and the interpretation of measurement results.

PURPOSE AND CONDITIONS OF NORMALIZATION 
TRANSFORMATIONS

The purpose of normalization transformations is to unify orders of magnitude and 
units of measurement. This makes it possible to compare distributions of varia-
bles expressed in different units of measurement or different orders of magnitude. 
The limiting condition for the use of normalization is that the power of the scale 
of measurement of the original variable must not be less than the power of the 
interval scale. The exception is rank normalization, which can be applied to data 
measured on an ordinal scale due to the fact that the rank itself transforms data 
from measurement on an ordinal scale to data corresponding to an interval scale 
and allows independence from the distribution of the variable. The reason for the 
aforementioned limitation is that there is no justification for conducting normal-
izing transformations when the scale of measurement does not provide for the 
possibility of determining equality of intervals, equality of differences and equality 
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of ratio of the measured variable values. This is the case when, for example, formal 
education is measured as a variable taking values ordered by “greater than” or “less 
than” relations, but not equality of differences and intervals. For the latter, a fixed 
unit of measurement is necessary, and such is lacking when the operationalization 
of this trait provides for such values as primary, secondary, tertiary. The situation 
is changed by the introduction of either one year or one semester as the unit of 
measurement of formal education. Then, with the accuracy of the adopted unit 
of measurement, it is possible to determine the ranges of values and the length 
of the interval taken by the difference between the values. Moreover, this way of 
operationalizing this variable determines the point 0, which is natural in the sense 
that the number 0 means that formal education measured in units of time takes on 
a value that corresponds to an empty set of years. Put simply, it takes on the value 
“no years”. However, if the purpose of measuring education measured on an ordi-
nal scale was to compare the distributions of two or more populations that differ in 
the number of values that formal education can take, or it would be reasonable to 
assume differences in the length of the stages of educational attainment, then rank 
normalization should be used. A didactic example of such normalization, taking 
tied ranks into account at the same time, is presented in Table 1.

Without normalizing the data, parametric characterization of the FE3 and FE4 
distributions would have to be limited to positional statistics, and their paramet-
ric comparison would give a distorted result. This becomes particularly apparent 
when relating the results: no differences in the range of variability (q, vq), and 
markedly different asYule values, to the sequence of observations in the xFE3 and 
xFE4 columns. While, in fact, both distributions are right-skewed and have similar 
but, nevertheless, different variability.

Table 1.
Rank normalization of source data and structure description of their distributions

Sort order xFE3 xFE4 rankFE3 rankFE4

1 1 1 2.5 2
2 1 1 2.5 2
3 1 1 2.5 2
4 1 2 2.5 5
5 2 2 6 5
6 2 2 6 5
7 2 3 6 7.5
8 3 3 9 7.5
9 3 4 9 9.5
10 3 4 9 9.5
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sum . . 55 55
m . . 5.50 5.50
me 2 2 6 5
q1 1 1.25 2.5 2.75
q3 2.75 3 8.25 7.5
d1 1 1 2.5 2
d9 3 4 9 9.5
s . . 2.86 2.93
q 0.875 0.875 2.875 2.375
v . . 0.520 0.534
vq 0.438 0.438 0.479 0.475
as . . 0.12 0.08
asYule -0.14 0.14 -0.22 0.05
k . . -1.81 -1.41
kdq 1.14 1.71 1.13 1.58

FE3 – variable “formal education” with three values, FE4 – variable “formal education” with four 
values, sum – sum, m – arithmetic mean, me – median, q1 – first quartile, q3 – third quartile, s – 
standard deviation, q – quartile deviation, d1 – first decile (10th percentile), d9 – ninth decile (90th 
percentile), v – coefficient of variation, vq – quartile coefficient of variation, as – classical asymmetry 
coefficient, asYule – Yule’s positional asymmetry coefficient calculated on basis of quartiles, k – clas-
sical kurtosis coefficient, kdq – positional kurtosis coefficient calculated on the basis of the first and 
ninth deciles and the first and third quartiles

Source: Author’s own study.

However, most normalization transformations are applicable to measurement 
scales of higher power (ordinal, ratio). Because they share common properties, 
they can be expressed in a single model.

NORMALIZATION TRANSFORMATIONS MODEL

The general model of normalization transformations takes the following form (Ja-
juga and Walesiak, 2000; Walesiak, 2014): 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 

where 
𝑎𝑎𝑎𝑎 = −𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖/𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 
𝑏𝑏𝑏𝑏 = 1/𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 , which can be converted to a simpler form (cf. ibid.): 
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𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + �

−𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖

� =
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖

 

 zij – transformed value of the j-th variable for the i-th object
xij – value of the j-th variable for the i-th object
µj – shift parameter to the contractual zero for the j-th variable
σj – scale parameter for the j-th variable (σj > 0)

The parameter µ allows the location of observations relative to a contractual 
zero point. The estimator of this parameter can be, for example, the arithmetic 
mean or median. The parameter σ determines the range within which this local-
ization occurs. The estimator of this parameter can be, for example, the standard 
deviation or the range. In this case, it is proper to associate two properties of the 
variable distribution: central tendency and variability.

In the case of quotient transformations, the parameter µ is 0. This is under-
standable when considering that they transform variables measured on a  ratio 
scale to a variable measured on the same scale. The ratio scale has a natural zero, 
and this means that the distance of an observation from a point of natural zero 
is informed by the sum of the units of measure corresponding to that observa-
tion, i.e. its value. Table 2 presents the normalization transformation formulas that 
are most commonly encountered in the literature (cf. Jajuga and Walesiak, 2000; 
Walesiak, 2012, 2014).

Formulas 1 through 11 apply to data from measurements on an interval scale 
and a quotient scale. After normalization with these formulas, the scale of meas-
urement is interval. Formulas 12 through 19 apply to data derived from measure-
ments on the quotient scale. They transform this data into a form which measure-
ment scale is also quotient. Thus, it is understood that the scale of measurement 
at the input and at the output is the main criterion for selecting a normalization 
formula.

Subsequent criteria make the choice of the formula dependent on expectations 
of the distributions characteristics after the transformation, as well as the location 
of the contractual zero, such as at the level of average value: arithmetic mean or 
median (transformations 1, 2, 3, 4, 5, 7, 8, 10), the mid of range (transformation 9), 
or minimal value (transformation 6). When the purpose of the transformation is 
to stabilize the mean (m, me) of the transformed variables, but while maintaining 
variation in variability and range, formulas 8, 10, 11, 13, 14, 18 become helpful. 
On the other hand, when the goal is to stabilize and standardize variability, trans-
formations 1, 2, 7, 15, 17 give fit results. Varying variability, but a constant range 
for all variables provide transformations 4, 5, 6, 16. Varying variability, but with it 
varying arithmetic mean and range provide transformations 12 and 19.

If the purpose of normalization is primarily to standardize the order of magni-
tude justified, for example, by the convenience of comparisons and compilations, 
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then formulas 1, 2, 6, 12, 16, as well as transformations using the natural logarithm 
and decimal logarithm, work well in this regard. The referenced criteria gain con-
firmation in simulations using Excel.

Table 2.
Source data transformation formulas

No. Transformation Formula*

1 Standardization [z(x)] z = (x −m)/s

2 Positional standardization [zq(x)] z = (x −me)/mad

3 Weber’s standardization [zWeber(x)] z = (x −me)/(1.4826)mad

4 Unitization [u(x)] z = (x −m)/r

5 Positional unitization [uq(x)] z = (x −me)/r

6 Reset unitization [ur(x)] z = (x −minx)/r

7 Normalization [nr(x)] z = (x −m)/√Σ(x-m)2

8 Positional normalization [nrq(x)] z = (x −me)/√Σ(x-me)2

9 Normalization with 0 centrally located [nr0(x)] z = (x −mr)/(r/2)

10 Normalization in the range [nr(-1,1)(x)] z = (x −m)/max|x− m|

11 Positional normalization in the range [nrq(-1,1)(x)] z = (x − me)/max|x-me|

12 Quotient 1 z = x/maxx

13 Quotient 2 z = x/m

14 Quotient 3 z = x/me

15 Quotient 4 z = x/s

16 Quotient 5 z = x/r

17 Quotient 6 z = x/mad

18 Quotient 7 z = x/Σx

19 Quotient 8 z = x/√Σx2 = x/(Σx2)1/2

x – value of variable in the data set (observation), z – transformed x, m – arithmetic mean, me – 
median, minx – minimal x in the data set, maxx – maximal x in the data set, s – standard deviation, 
r – range (difference between maxx and minx), mr – mid-range calculated as: (max + min)/2, max|x−m| 
– maximal absolute difference between observations and arithmetic mean in the data set, mad (me|x− 

me|) – median absolute deviation calculated as a median of absolute differences between observations 
and median in the data set, ∑ – sum
*the formulas are given in a linear notation.
Source: Author’s own study based on (Walesiak, 2012, 2014).
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SELECTED PROPERTIES OF NORMALIZATION TRANSFORMATION 
MODELS

The two basic properties of normalization formulas (Walesiak, 2014) are (1) they 
do not change symmetry and kurtosis of distribution, and (2) for each pair of var-
iables, they do not change the value of the linear correlation. The justification for 
these properties can be formulated based on the analysis of the general normal-
ization transformation model. However, empirical confirmation already requires 
experimentation. For this purpose, a set of randomly generated data was used. It 
consisted of 50 records, each of which contained two values. In other words, the set 
contained 50 observations corresponding to one variable (X) and 50 observations 
corresponding to the other variable (Y). In the first step, the form of the distribu-
tion of the one-dimensional random variable X was observed. In the second, Pear-
son’s r statistic used in the parametric characterization of the distribution of the 
two-dimensional random variable XY was observed. The results are in agreement 
with the two basic properties reported in the literature.

Whilst testing property (1), the symmetry and kurtosis of the distributions 
after transforming the original data with each of the 19 formulas did not change 
(respectively: as = -0.01, k = -0.91), although the distributions differ in central 
tendency and variability (Table 3). 

Table 3.
Descriptive statistics of source data and its transformations

Distribution m s as k

X 0.53 0.27 –0.01 –0.91

1 0.00 1.00 –0.01 –0.91

2 –0.10 1.30 –0.01 –0.91

3 0.00 0.04 –0.01 –0.91

4 0.00 0.27 –0.01 –0.91

5 –0.02 0.27 –0.01 –0.91

6 0.53 0.27 –0.01 –0.91

7 0.00 0.14 –0.01 –0.91

8 –0.01 0.11 –0.01 –0.91

9 0.06 0.53 –0.01 –0.91

10 0.00 0.52 –0.01 –0.91

11 –0.04 0.50 –0.01 –0.91

12 0.53 0.27 –0.01 –0.91
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Distribution m s as k

13 1.00 0.51 –0.01 –0.91

14 0.96 0.49 –0.01 –0.91

15 1.96 1.00 –0.01 –0.91

16 0.54 0.27 –0.01 –0.91

17 2.54 1.30 –0.01 –0.91

18 0.02 0.01 –0.01 –0.91

19 0.13 0.06 –0.01 –0.91

Source: Author’s own study.

Selected figures (chosen due to space limitations) visualize the shape of the 
distributions (Figure 1). The distributions are presented as a histogram for contin-
uous (interval) series. The number of classes (k) was calculated according to the 
standard formula: k = 1 + 3,322 log(n), where n is sample size. Similarly, according 
to the standard formula, the width of classes (h) was calculated: h = (max−min)/k.

Figure 1.
Distribution of source data (x) and transformed

 

 Source: Author’s own study.

Whilst testing property (2), the results showed that the correlation coeffi-
cient also did not change (Pearson’s r = 0.45). Moreover, it can be noted that the 
correlation coefficient between the distributions obtained by applying different 
transformation formulas was the same as for the distributions of the original 
two-dimensional variable XY and its transformations according to the same for-
mula (Table 4).
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Table 4. 
Linear correlation coefficient Pearson’s r of source variable and its transformations

V X 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X 11X 12X 13X 14X 15X 16X 17X 18X 19X

Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

1Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

2Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

3Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

4Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

5Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

6Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

7Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

8Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

9Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

10Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

11Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

12Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

13Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

14Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

15Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

16Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

17Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

18Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

19Y 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

V – variable, X – variable X, Y – variable Y, 1X to 19X – numbers of subsequent transformations of X 
variable, 1Y to 19Y – numbers of subsequent transformations of Y variable

Source: Author’s own study.

Symmetry, flatness and co-variability of distributions are not altered by the 
presented normalization formulas. This may be an advantage, but if there is a need 
to change these properties, then other transformations must be used, such as 
logarithmic, exponential, root, power and reciprocal, and in the case of weaker 
measurement scales – logit or angular transformations. Nevertheless, some of the 
presented formulas stabilize the variance of the distribution, while others bring the 
value of the variance measures to the same order of magnitude. These can be useful 
when the analysis methods require meeting the assumption of homoscedasticity.
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SUMMARY AND CONCLUSIONS

This article discusses the normalization transformation by variables. However, the 
same normalization method can be carried out by object. Then µ is the shift to the 
conventional zero for the i-th object, and σ is the scale parameter for the i-th ob-
ject. In pedagogy and related disciplines, it is less common to find such normaliza-
tion, although it can certainly be very useful in research conducted in a single-case 
design. 

The above transformations can be performed in Excel, SPSS, Statistica and 
many other programs by entering in the command lines the formulas given above. 
Also, there can be used the clusterSim package in R using the data.Normalization 
function. However, the normalizing transformation has basic limitation which is 
problematic interpretation of transformed data in the language of original data. 
Under certain conditions, this can be remedied by transforming the transforma-
tion formula. Then in place of zij getting a value expressed in units of the source 
data. An example of transforming the formula z = (x m)/s according to the scheme: 
[1] (z = (x m)/s)s, [2] zs = x m, [3] zs + m = x. Another limitation, usually very 
serious, is the non-unimodal distribution of variable before transformation. The 
inability to transform data from a weaker power scale to a higher power scale can 
also be considered a  limitation, which means that in research projects that take 
into account multiple variables, the transformation results in a reduction of the 
power of measurement scale to the level of the variable with the weakest pow-
er. Despite these limitations, normalization transformations make it possible to 
rationally perform analyses minimizing the risk of artifacts due to differences in 
orders of magnitude and units of measurement. This is particularly important for 
multivariate classification methods and multidimensional scaling, and wherever 
there is a need to compare distributions.
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PRZEKSZTAŁCENIA NORMALIZACYJNE DANYCH W PROCEDOWANIU 
METOD STATYSTYCZNYCH WYKORZYSTYWANYCH W BADANIACH 

NAD EDUKACJĄ

Wprowadzenie: Zdarza się, że odwzorowanie wartości cechy dokonane podczas pomiaru 
wymaga przekształcenia z uwagi na warunki związane z analizą danych.
Cel badań: Celem artykułu jest przybliżenie zagadnienia normalizacyjnych przekształceń 
danych i okoliczności ich zastosowań.
Stan wiedzy: Z powodu braku wiedzy lub doświadczenia przekształcenia danych mogą 
nie być brane pod uwagę podczas analiz prowadzonych w  badaniach nad edukacją. Je-
śli występują, to spośród najpopularniejszych sposobów przekształceń stosunkowo czę-
sto wybierane są te, które służą redukcji skośności rozkładów. Jednak nie zawsze sposób 
przekształcenia dobierany jest adekwatnie do własności danych oraz warunków analizy. 
Przekształcenia normalizacyjne należą do prostszych, a zarazem efektywnych rozwiązań 
przygotowujących dane do prowadzenia analiz.
Podsumowanie: Przekształcenia normalizacyjne minimalizują ryzyko powstawania arte-
faktów na skutek różnic w zakresie rzędu wielkości oraz jednostek miary. Ma to szczególne 
znaczenie podczas prowadzenia analizy z użyciem wielowymiarowego skalowania i wielo-
wymiarowych metod klasyfikacji.

Słowa kluczowe: przekształcenia danych źródłowych, normalizacja, metody statystyczne.


