Esquisse d'un cadre d'apprentissage de l'intelligence artificielle pour la traduction, l'interprétation et la communication spécialisée

Ralph Krüger

Résumé


L'article contient uniquement le résumé en anglais.

Mots-clés


industrie de la langue ; intelligence artificielle ; traduction automatique neuronale ; grands modèles linguistiques ; connaissance de la traduction automatique ; connaissance des données ; connaissance de l'intelligence artificielle

Texte intégral :

PDF (English)

Références


Alemohammad, S., Casco-Rodriguez, J., Luzi, L., Humayun, A. I., Babaei, H., LeJeune, D., Siahkoohi, A., & Baraniuk, R. G. (2023). Self-consuming generative models go MAD. arXiv. https://doi.org/10.48550/arXiv.2307.01850

Bianchi, F., Fornaciari, T., Hovy, D., & Nozza, D. (2023). Gender and age bias in commercial machine translation. In H. Moniz, & C. Parra Escartín (Eds.), Towards responsible machine translation. Ethical and legal considerations in machine translation (pp. 1–11). Springer. https://doi.org/10.1007/978-3-031-14689-3_9

Brey, P. A. E. (2012). Anticipatory ethics for emerging technologies. NanoEthics, 6, 1–13. http://doi.org/10.1007/s11569-012-0141-7

Crawford, K. (2021). Atlas of AI. Power, politics, and the planetary costs of artificial intelligence. Yale University Press.

DataLitMT (2023). DataLitMT project website. https://itmk.github.io/The-DataLitMT-Project/

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J, Li, L., & Sui, Z. (2023). A survey on in-context learning. arXiv. https://doi.org/10.48550/arXiv.2301.00234

Ehrensberger-Dow, M., & Massey, G. (2017). Socio-technical issues in professional translation practice. Translation Spaces, 6(1), 104–121. https://doi.org/10.1075/ts.6.1.06ehr

ELIS Research (2023). European language industry survey 2023. https://elis-survey.org/

European Parliament (2023). EU AI Act: first regulation on artificial intelligence. h t t p s : / / w w w. e u r o p a r l . e u r o p a . e u / t o p i c s / e n / a r t i c l e / 2 0 2 3 0 6 0 1 S T O 9 3 8 0 4 /eu-ai-act-first-regulation-on-artificial-intelligence

European Parliamentary Research Service (2023). General-purpose artificial intelligence. European Parliament. https://www.europarl.europa.eu/RegData/etudes/ATAG/2023/745708/EPRS_ATA(2023)745708_EN.pdf

Gu, A., & Dao, T. (2023). Mamba: Linear time-sequence modelling with selective state spaces. arXiv. https://doi.org/10.48550/arXiv.2312.00752

Herbig, N., Pal, S., van Genabith, J., & Krüger, A. (2019a). Multi-modal approaches for post-editing machine translation. In S. Brewster, G. Fitzpatrick, A. Cox, & V. Kostakos (Eds.), CHI ’19: Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1–11).

Association for Computing Machinery. https://doi.org/10.1145/3290605.3300461

Krüger, R. (2022). Integrating professional machine translation literacy and data literacy. Lebende Sprachen, 67(2), 247–282. https://doi.org/10.1515/les-2022-1022

Krüger, R. (2023). Artificial intelligence literacy for the language industry – with particular emphasis on recent large language models such as GPT-4. Lebende Sprachen, 68(2), 283–330. https://doi.org/10.1515/les-2023-0024

Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In R. Bernhaupt, F. Mueller, D. Verweij, & J. Andres (Eds.), CHI ‘20: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–16). Association for Computing Machinery. https://dl.acm.org/doi/10.1145/3313831.3376727

Markauskaite, L., Marrone, R., Poquet, O., Knight, S., Martinez-Maldonado, R., Howard, S. Tondeur, J., De Laat, M., Buckingham Shum, S., Gasevic, D., & Siemens, G. (2022). Rethinking the entwinement between artificial intelligence and human learning: What capabilities do learners need for a world with AI? Computers and Education: Artificial Intelligence, 3, 1–16. https://doi.org/10.1016/j.caeai.2022.100056

Moniz, H., & Parra Escartín, C. (2023) (Eds.). Towards responsible machine translation. Ethical and legal considerations in machine translation. Springer. https://doi.org/10.1007/978-3-031-14689-3

Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 1–11. https://doi.org/10.1016/j.caeai.2021.100041

O’Brien, S., & Ehrensberger-Dow, M. (2020). MT literacy – a cognitive view. Translation, Cognition & Behaviour, 3(2), 145–164. https://doi.org/10.1075/tcb.00038.obr

Ridsdale, C., Rothwell, J., Smit, M., Ali-Hassan, H., Bliemel, M., Irvine, D., Kelley, D., Matwin, S., & Wuetherick, B. (2015). Strategies and best practices for data literacy education. Knowledge synthesis report. Dalhousie University. http://hdl.handle.net/10222/64578

Sakamoto, A. (2019). Why do many translators resist post-editing? A sociological analysis using Bourdieu’s concepts. Journal of Specialised Translation, 31, 201–216. https://jostrans.soap2.ch/issue31/art_sakamoto.php

Salesforce (2023). More than half of generative AI adopters use unapproved tools at work. https://www.salesforce.com/news/stories/ai-at-work-research/

Schüller, K., Rampelt, F., Koch, H., & Schleiss, J. (2023). Better ready than just aware: Data and AI Literacy as an enabler for informed decision making in the data age. In M. Klein, D. Krupka, C. Winter, & V. Wohlgemuth (Eds.), INFORMATIK 2023, Lecture Notes in Informatics (LNI) (pp. 425–430). Gesellschaft für Informatik. https://doi.org/10.18420/inf2023_49

Shumailov, I., Shumaylov, Z., Zhao, Y., Gal, Y., Papernot, N., & Anderson, R. (2023). The curse of recursion: Training on generated data makes models forget. arXiv. https://doi.org/10.48550/arXiv.2305.17493

Szczerbicki, E., & Nguyen, N. T. (2021). Intelligence augmentation and amplification: Approaches, tools, and case studies. Cybernetics and Systems, 53(5), 381–383. https://doi.org/10.1080/01969722.2021.2018551

Van Lier, M. (2023). Understanding large language models through the lens of artificial agency. In H. Grahn, A. Borg, & M. Boldt (Eds.), 35th annual workshop of the Swedish Artificial Intelligence Society (SAIS 2023) (pp. 79–84). https://doi.org/10.3384/ecp199008

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, Ł. (2017). Attention is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems 30 (NIPS 2017) (pp. 1–11). https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Yong, Z.-X., Menghini, C., & Bach, S. H. (2024). Low-resource languages jailbreak GPT-4. arXiv. https://doi.org/10.48550/arXiv.2310.02446




DOI: http://dx.doi.org/10.17951/lsmll.2024.48.3.11-23
Date of publication: 2024-10-07 11:52:21
Date of submission: 2024-03-17 17:02:39


Statistiques


Visibilité des résumés - 511
Downloads (from 2020-06-17) - PDF (English) - 157

Indicateurs



Renvois

  • Il n'y a présentement aucun renvoi.


Droit d'auteur (c) 2024, Ralph Krüger

Licence Creative Commons
Ce(tte) œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution 4.0 International.