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Abstract. For modelling the flow transport in unsaturated conditions, we can use hydraulic prop-
erties which are expensive and time-consuming to be obtained directly because of high varia-
bility and complexity of soil systems. Few studies have been done about pedotransfer functions 
(PTFs) in smectitic soils. Moreover, the utility of fractal parameters in the prediction of soil water 
retention curve (SWRC) have not been investigated in these soils. In this study, PTFs have been 
made for estimating the parameters of van Genuchten (VG) and Dexter models by regression and 
artificial neural networks methods. Therefore, 69 soil samples were collected from Guilan Prov-
ince, Iran. Fractal and non-fractal models were fitted to the particle size distribution (PSD) and 
micro-aggregate size distribution (ASD) and their parameters were calculated. To create PTFs, 
the parameters of PSD and ASD models were used as estimators. The comparison of the results of 
the two models of Dexter and VG shows the priority of Dexter model for the purpose of testing of 
smectitic soils. The results showed the superiority of Fredlund et al. PSD model parameters and 
fractal parameters of ASD, in the estimation of Dexter and VG SWRC models, respectively. This 
outcome may be related to the higher accuracy of Fredlund et al. PSD model in the description of 
the PSD data in the clayey soils. However, the higher number of parameters in comparison to the 
number of fractal model parameters may be another reason.1

One of the significant hydraulic properties employed for modelling the 
flow transport in porous media is the soil water retention curve (SWRC) which 
defines the relationship between soil water content and matric potential. It is 
vital to simulate soil processes, such as soil erosion, soil pollutant movement, 
and nutrient dynamics [31]. Since, direct measurement of the SWRC is diffi-
cult, expensive, time-consuming and needs special equipment [41], pedotransfer 
functions (PTFs) [29] and physico-empirical methods [30], have been developed 
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to estimate SWRC by using available data, such as soil particle size distribution 
(PSD), soil texture [34], particle density, bulk density, porosity and pore size 
distribution [4].

The mineral properties of clay are essential for numerous soil functions, 
including water and nutrient retention, contaminant (pesticides, heavy met-
als) attenuation, carbon storage, the stability of soil structure and filtering of 
both ground and surface waters. In temperate regions, 2:1 clay minerals (smec-
tite, vermiculite, illite, chlorite and their intergrades) have been considered to 
a greater extent as they dominate the clay mineralogy of many soils. Smectite 
and ‘mixed layer’ clays have been reported to include an important part of the 
clay fraction in most areas where Vertisols have been studied [63].

The Vertisols are soils with a high clay content and smectitic type of clays 
[54] that exhibit high potential of swelling and shrinkage with minimal horizon 
differentiation due to pedoturbation [1]. Wetting Vertisols make them very plas-
tic and sticky. On wetting the soil increases its volume by swelling, the cracks 
are closed, and soil level rises [43]. In soils with high clay content under field 
conditions, the mineral particles are likely to form soil aggregates. Consecutive 
swelling and drying cycles makes aggregates stronger and smaller [28].

Some researchers have employed pedotransfer functions in various soil 
types. Tomasella et al. [59] used PTFs for estimation of the SWRC in Brazil-
ian soils. Hodnett and Tomasella [27] developed a new PTF for tropical soils. 
Manyam et al. [36] studied the modelling of hydraulic properties in sandy soils 
of Niger using PTFs. Patil and Rajput [44] evaluated water retention function in 
shrinking and swelling soils. Das and Verma [11] used PTFs in sandy to clayey 
soils. Kodaverdiloo et al. [33] used PTFs in calcareous soils, and Mosaddeghi 
and Mahboubi [40] used PTFs in saline soils in Western Iran. However, little 
research has been conducted on the application of PTFs in smectitic soils. 

Estimating hydraulic properties from PSD is particularly useful. Since 
a detailed characterization of hydraulic properties is usually impossible, PSD 
may be obtained from soil databases [53]. So, the retention function can be 
related directly to the PSD of the soil. 

Fractal mathematics is a good method to characterize PSD [19]. The intro-
duction of physical models based on the fractal geometry of natural media [35] 
have provided soil scientists with the first integrated model of soil structure 
[50]. Various authors [25] have suggested physically based models that use the 
well-known relation between pore diameter and water potential expressed by 
Jurin’s law, and deduce pore size distribution from the PSD. There are available 
studies which indicate that data about the structure of the soil can be interpreted 
by fractal geometry. These studies have proved the existence of a unique fractal 
dimension (usually a mass fractal dimension) within the scale range where data 
are available, while other investigations have modelled the SWRC as the effect 
of an underlying fractal surface [13]. 
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The mass-based models assume that soil pores desaturate as predicted by 
the Young-Laplace equation [60], while surface-based models consider the 
existence of a thin layer of water [13, 58]. 

Bayat et al. [7, 8], have used the fractal parameters of particle and aggregate 
size distributions as predictors to estimate the SWRC using ANNs in non-smectit-
ic soils and reported that the accuracy and reliability of the PTFs were improved. 
Despite the usefulness and applicability of fractal models, the utility of the fractal 
parameters especially the fractal parameters of the micro-aggregate size distribu-
tion in the estimation of SWRC has not so far been investigated in the smectitic 
soils. On the other hand, Millan et al. [38] have successfully used the model of 
Perrier and Bird [47, 48] to describe the micro-aggregate size distribution of the 
Vertisols and Fredlund et al. [21] reported that their model could estimate PSD 
with a high accuracy and its accuracy was improved by increasing soil clay con-
tent. Therefore, in this study these two models were used to describe the PSD and 
ASD and their parameters have been used as predictors to estimate the SWRC in 
smectitic soils. 

In addition to linear and non-linear regression and artificial neural networks 
(ANNs), the group method of data handling (GMDH), the k-Nearest Neighbor 
(k-NN) and the boosted regression method are other methods that can be used 
to create PTFs. The k-NN algorithm is a method for classifying objects based 
on closest training examples in the feature space and is amongst the simplest of 
all machine learning algorithms [32]. The GMDH is a self-organization mod-
el (an extremely high-order polynomial in input variables) that can be used to 
solve prediction, identification, control synthesis, and other system problems. 
The GMDH algorithms are characterized by the inductive procedure that per-
forms sorting-out of gradually complicated polynomial models and selecting 
the best solution by means of the so-called external criterion [18]. Regression 
tree modelling is an exploratory technique based on uncovering structure in data 
[10]. Alternative to multiple regression, rather than fitting a model to the data, 
a tree structure is generated by dividing the sample recursively into a number of 
groups, each division being chosen to maximize the difference in the predicted 
variable in the resulting two groups [57].

Although plenty of research has been done to estimate the SWRC by means 
of various estimators, the SWRC models - particularly Dexter SWRC model - 
have not so far been predicted by fractal and non-fractal parameters of PSD and 
micro-aggregate size distribution (ASD) in smectitic soils. Therefore, the objec-
tive of this study is to investigate the possibility of improving the estimation 
of van Genuchten and Dexter models parameters by using Perrier and Bird’s 
[47, 48] PSD and ASD fractal parameters and Fredlund et al’s [21] PSD model 
parameters as predictors in smectitic soils. 
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THEORY

SWRC Models

This study has been conducted to assess the performance and suitability of 
some PTF models in estimating the SWRC of the smectitic soils of selected soil 
series in a wet region of Northern Iran. Van Genuchten (VG) [62] and Dexter et 
al. [14] (hereafter referred to as Dexter model) models were used for the SWRC. 

Van Genuchten SWRC Model

The van Genuchten [62] SWRC function was represented by:
 

         (1)

where, h is matric suction (cm); α (cm-1) and n are shape factors of the 
SWRC model. The parameter α is described as inverse of air entry value. The 
dimensionless van Genuchten’s parameter n refers to the steepness of the water 
retention curve. Se is the effective saturation and expressed as:

 
         (2)

where θr (cm3cm-3) is residual water content, θs (cm3cm-3), is saturated water 
content which is a physical parameter that can be measured and θ (cm3cm-3) is 
soil water content. 

Van Genuchten model, which includes three shape parameters, (two if the 
parameters are limited to certain values), estimates a sigmoidal shape of the 
SWRC [24].

Dexter SWRC Model 

Another SWRC model used in this study is the Dexter et al. [14] model, 
that is based on the notion that soil porosity is comprised of four parts. The total 
void ratio, etotal, is defined as the volume of pores (or voids) per unit volume of 
solid (mineral) matter.

 
         (3)

where, eresidual and emacro are the void ratios corresponding with pores that are 
too small and too large, respectively, to be characterized in standard water reten-
tion experiments. Matrix porosity (ematrix) is the pore space between individual 
soil mineral particles. Structural porosity (estructural) is the pore space between the 
micro-aggregates and between primary aggregates too. In most soils, the matrix 
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and structural pore spaces can be emptied and therefore studied in conventional 
SWRC studies which cover the range of soil water suctions from 10–15,000 hPa. 

The Dexter et al. [14] SWRC function was represented by:

1 2( ) ( )
1 2

h h h hW C A e A e− −= + +
 

         (4)

where C, is the asymptote of the equation, and this is the residual water con-
tent (i.e. the water content as h→∞). When h1 > h2, we identify the second term 
with the emptying of the matrix pore space and the third term with the emptying 
of the structural pore space. The amounts of matrix and structural pore spaces are 
proportional to A1 and A2, respectively. The values of h1 and h2 are the character-
istic pore water suctions at which the matrix and structural pore spaces empty, 
respectively. This model is a double-exponential water retention equation with 
5 adjustable parameters is introduced in order to fill the need for a user-friendly 
equation in which all the terms have a distinct physical meaning [14].

PSD Models
Perrier and Bird [47, 48] Model

In addition to the cumulative number-size distribution of soil units, the 
standard pore-solid fractal model derives cumulative mass-size distributions 
[49] of soil particles or aggregates which are very useful for experimental analy-
ses. This case may be generally expressed in the following term:

m(x≤ xi) = (αD-3)(LD-3)(xi)
3-D

where m(x≤xi) is the soil mass (or soil mass percentage) formed by units 
(primary particles, fragments or micro-aggregates) with characteristic diameter, 
x, smaller than or equal to a defined diameter, xi, α is a similarity ratio, L is the 
initiator size and D is the fractal dimension. An important point is that fractal 
mass-size relationships are based on the assumption of a scale invariant bulk 
density. In this study if the above model was fitted on the PSD data, its param-
eters were shown with the subscript “p” and if it was fitted on the ASD data, its 
parameters were shown with the subscript “a”.

Fredlund et al. [21] PSD Model 

The Fredlund equation is:
   (5)

Pp(d) is the percentage, by mass, of particles passing a particular size, agr 
is a parameter designating the inflection point on the curve, ngr is related to the 
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steepest slope on the curve, mgr is a parameter related to the shape of the curve 
as it approaches the fines region, drgr is a parameter related to the amount of fines 
in a soil, d is the diameter of any particle size under consideration and dm is the 
diameter of minimum allowable size particle.

MATERIALS AND METHODS

Soil Sampling and Analysis

The data set used in this study was taken from Bayat et al. [6]. Sixty-nine 
soil samples were used to obtain PTFs for estimation of parameters of VG and 
Dexter models. The disturbed and undisturbed soil samples were collected from 
Guillan province (36° 34′-38° 27′ N, 48° 53′-50° 34′ E), Iran. According to 
Davatgar et al. [12] smectite is the dominant clay mineral in Guilan province of 
Iran. The disturbed samples were collected by means of an auger and the undis-
turbed samples were collected by use of sampling cylinders of 4 cm in height 
and of 5.1 cm in diameter.

Particle size distribution was measured by combination of sieve and 
hydrometer in the range of 0–2 mm. During 24 hours, 9 readings were per-
formed by hydrometer. Afterwards, the particles were divided into very fine sand 
(0.05–0.1 mm), fine sand (0.1–0.25 mm), medium sand (0.25–0.5 mm), coarse 
sand (0.5–1 mm) and very coarse sand (1–2 mm) by the dry sieving method 
[23]. Micro-aggregate size distribution in the range of 0–2 mm was measured 
by the method of wet sieving and a hydrometer. This method was similar to the 
PSD, but a dispersing agent was not used and the separation of fine aggregates 
which were as big as the sand was done by wet sieving. BD was measured by 
the sampling cylinder method. 

In order to gain SWRC at suctions lower than 10 kPa, the sand box was 
used and at suctions higher than that, pressure plate apparatus was used. The 
amount of water at the suctions of 0, 1, 5, 10, 25, 50, 100, 200, 500, 1000 and 
1500 kPa was determined for 69 collected soil samples. The above measure-
ments were done up to100 kPa suction on undisturbed soil samples and above 
that, it was done on disturbed soil samples. Then VG and Dexter models were 
fitted on the experimental data by use of Solver function of Excel software [22], 
and their parameters were arrived at.

Perrier and Bird [47, 48] fractal model was fitted on the PSD and ASD data 
by use of Solver function of Excel software. Fredlund et al. [21] model was fit-
ted only on the PSD data by means of Solver function of Excel software.



111PEDOTRANSFER FUNCTIONS

Development of PTFs
Artificial Neural Network

The 69 data that had been taken from Bayat et al. [6] were partitioned into 
2 sets using a randomized approach: a training set of 46 data and a testing set of 
23 data. 

Artificial neural network (ANN) ensembles method was used to develop the 
PTFs in order to predict the parameters of the VG and Dexter SWCC models. For 
every PTF, 75 models were developed using two types of ANNs; feed-forward 
Multilayer perceptrons (MLP) and radial basis function (RBF). Performances of 
two types of ANNs were evaluated; each type was run with one hidden layer and 
different hidden neurons ranging from 3 to 12. Therefore, a combination of ANN 
and bootstrap method was used to develop each of 75 models for prediction of 
the parameters of the VG and Dexter SWRC models [17]. 

Several transfer functions including tanh, exponential, logistic, identity, and 
sine in hidden and output layers were examined. The influence of the number 
of ANN ensemble members is evaluated on the RMSE of the ensemble mod-
els, and behaving conservatively the 25 most successful ANN models with the 
least Akaike information criterion (AIC) and integral root mean square error 
(IRMSE) values and the highest coefficient of determination (R2) values, were 
selected carefully out of 75 developed ones to make an ANN ensemble model. 

Pedotransfer Functions Development

The first process was to normalize the data which resulted in the fact that 
only mgr had a normal distribution, and then the transformation of data was con-
ducted for other parameters. Sand - using the equation 0.0016sand2+0.16sand, 
clay - using the equation log(clay), bulk density (BD) - using the equation 
cosBD, the fractal parameter of PSD (αp) - using the equation of -14.1αp

2+33.9αp, 
the fractal dimension of PSD (Dp) - using the equation of Dp-2, the fractal param-
eter of PSD (Lp) - using the equation -14.2Lp

2+34.1Lp, the fractal parameter of 
ASD (αa) - using the equation of -2.98αa

2 +12.2αa, the fractal dimension of ASD 
(Da) - using the equation of Da-2, the fractal parameter of ASD (La) - using the 
equation of -2.91La

2+12.06La, agr - using the equation of 1.33ln(agr), ngr - using 
the equation of 3.18ln(ngr), drgr - using the equation of log(drgr), the θr - using the 
equation of -5.73θr

2+7.63θr
0.3, θs - using the equation of log(θs), α - using the 

equation of log(α), n - using the equation of -0.24n2+2.3n-2.92, the C param-
eter of Dexter model - using the equation of log(C), A1 - using the equation of 
-7.6A1

2+11.2A1–2.18, A2 - using the equation of 1.10ln(A2) +3.4, h1 - using the 
equation of 10–8h1

2–0.00004h1+0.005 and h2 - sing the equation of log (h2). Then 
all the variables standardized to have a zero mean and unit variance. 
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The clay and sand contents, BD, fractal parameter of PSD and ASD as well 
as the parameters of Fredlund et al. [21] model were used as the independent 
variables while the parameters of the SWRC models of VG and Dexter were 
the dependent variables. One third of the samples (23) were randomly taken for 
validation process and the rest (46) were employed for training.

Linear and nonlinear regressions and ANNs were used in order to develop 
the PTFs. By comparing the results of the linear and nonlinear regressions, the 
models of the method with the better results were kept and the results of the other 
method were not shown. Four steps applied to develop PTFs. At the first step in 
order to develop PTF1 the basic soil properties of clay, sand and BD, were used 
as estimators and the parameters of VG and Dexter models were estimated. At 
the second step PTF2 used the fractal parameters of PSD (αp, Dp, Lp) as addition-
al inputs. At the third step input variable of the PTF3 included the fractal param-
eter of ASD (αa, Da La) as additional inputs. At the fourth step to develop PTF4, 
the parameters of Fredlund et al. [21] PSD model (agr, ngr, mgr, drgr) were used as 
additional inputs to estimate the parameters of VG and Dexter models. The esti-
mated parameters of each step were used to form the SWRC models of VG and 
Dexter as the estimated curves for the related steps. Then, the estimated curves 
of each step were compared with measured SWRCs and the evaluation criteria 
were computed. Finally the improvement of SWRC estimations was investigat-
ed by using PSD and ASD parameters as estimators.

Table1 shows the statistical characteristics of variables that are used to 
develop PTFs. The clay and sand contents show the heavy to moderate texture 
of the soils in this research. The mean percentage of sand in both train and test 
data was lower than the mean percentage of clay. The used samples in this study 
cover soil textural classes except, five classes of sandy, silty, sandy loam, sandy 
clay loam and sandy clay (Fig. 1). The range of variables in this study was high 
which shows high applicability of developed PTFs. Ungaro et al. [61] have 
proven that under these circumstances, employing the developed PTFs within 
the range of applied data entail greater accuracy. Because data for test and train 
steps is selected randomly, the range of changes and the average of the variables 
is similar in the testing and training data sets. The t-test comparison between the 
average of the variables in the testing and training data sets did not reveal a sig-
nificant difference between them (the data are not shown).
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Fig 1: Distribution of soil samples in soil textural triangle.

Evaluation Criteria

Akaike information criterion (AIC), coefficient of determination (R2), rel-
ative improvement (RI), integral root mean square error (IRMSE) and integral 
mean error (IME) were used for investigating the accuracy and reliability.

Akaike information criterion (AIC) [2]:
 

         (6)

where np is the number of parameters of the model that should be estimated, 
N is the number of the observations of the SWRC, θm and θp are the measured 
and estimated volumetric water contents, respectively. The more negative the 
AIC values, the more accurate the estimations.

To evaluate the error of PTFs in each step after the estimation of the param-
eters of VG and Dexter models, they are used to simulate SWRC. Then the 
simulated curves were compared with the measured curves using the IRMSE  
(m3 m-3) and IME (m3 m-3) criteria.
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         (7)

         
(8) 

where h is the matric potential (kPa), θm and θp are the measured and the 
estimated volumetric water contents, respectively. IME can also have positive   
and negative values but, IRMSE can only have positive values. If the value of 
IME and IRMSE were close to zero, estimated accuracy increases.

Relative improvement:
 

     i=2, 3 or 4    (9)

where IRMSE1 is IRMSE of the first step; IRMSEi is IRMSE of the second 
to fourth steps.

RESULTS AND DISCUSSION

Correlation between Fractal Parameters and Soil Texture

The correlation of fractal dimension of PSD with clay and sand contents 
was positively and negatively significant, respectively (Table 2). According to 
the previous studies, by increasing the sand content and decreasing clay content, 
fractal dimension [37] and water retention [26] decreases. So there is a direct 
relationship between the fractal dimension and water retention.

Correlation between the Parameters of the PSD and SWRC Models 

The simple linear correlation between the parameters of the VG and Dexter 
SWRC models and the PSD fractal parameters and the parameters of Fredlund 
et al. [21] model were significant, in some cases (Table 2). One of the reasons 
for the correlation between the fractal parameters of PSD and the shape parame-
ters of the SWRC was the similarity of the PSD curve and the SWRC [29]. Zoo 
and Dong [65] reported that PSD had the same fractal dimension as the pore 
size distribution. There is no linear correlation between the parameters of the 
VG and Dexter SWRC models and the ASD fractal parameters. However, in the 
VG model PTF3 was the superior PTF in comparison with the other PTFs. 
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Estimation of VG and Dexter Models by Regression and ANN Methods
Comparison of Regression and ANN Methods

To estimate the VG and Dexter models, three methods of linear and non-
linear regression and ANNs were employed. The results obtained from these 
methods (Table 3) demonstrated that the ANNs created the best results for the 
VG and Dexter models. The comparisons of measured and predicted values by 
the SWRC models for two soils were shown in Fig. 2 and 3. As it was depicted 
in Fig. 2 and 3 ANN models performed better than the regression models. 

TABLE 3: THE RESULTS OF THE ESTIMATION OF VG AND DEXTER SWRC 
MODELS BY USING REGRESSION AND ANNs METHODS 

IME IRMSE R2 AIC RI

VG Train ( regression)
PTF1 -0.322 0.307 0.860 -1166
PTF2 -0.055 0.150 0.908 -1740* 50.9
PTF3 -0.074 0.155 0.878 -1364* 49.4
PTF4 -0.072 0.151 0.896 -1823* 50.6

Test ( regression)

PTF1 -0.347 0.334 0.924 -501
PTF2 -0.015 0.120 0.949 -911* 64
PTF3 -0.010 0.087 0.933 -544* 73.8
PTF4 -0.012 0.128 0.951 -850* 61.7
VG Train(ANN)
PTF1 -0.011 0.110 0.919 -1069
PTF2 -0.036 0.105 0.936 -2011* 4.6
PTF3 -0.023 0.108 0.910 -1392* 1.7
PTF4 -0.028 0.092 0.935 -2266* 16.1

Test(ANN)
PTF1 0.012 0.110 0.897 -1015
PTF2 -0.017 0.108 0.953 -1073* 2.2
PTF3 0.028 0.062 0.961 -1103* 43.6
PTF4 0.021 0.076 0.946 -993 31.2

Dexter Train (regression)

PTF1 0.062 0.235 0.639 -1330
PTF2 -0.018 0.126 0.961 -1833* 46.2
PTF3 0.085 0.162 0.963 -1468* 30.7
PTF4 0.001 0.109 0.883 -2221* 53.4
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TABLE 3. CONTINUATION

Fig. 2. Measured and predicted SWRCs by regression (a – soil 1 and b – soil 2) and ANNs 
(c – soil1 and d – soil 2) methods for VG model. 

Test (regression)

PTF1 0.125 0.2399 0.551 -567
PTF2 0.052 0.094 0.966 -1125* 60.8
PTF3 0.066 0.105 0.906 -782* 56.6
PTF4 0.049 0.079 0.918 -978* 67 
Dexter Train(ANN)
PTF1 -0.031 0.107 0.968 -2255
PTF2 -0.041 0.121 0.968 -1846 -13.5
PTF3 -0.032 0.117 0.970 -1447 -9.1
PTF4 -0.034 0.117 0.970 -2049 -9.5

Test(ANN)

PTF1 0.006 0.075 0.975 -1117
PTF2 0.003 0.084 0.963 -834 -12.7
PTF3 0.037 0.0602 0.981 -895 19.6
PTF4 0.011 0.073 0.972 -1038 1.6
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Fig. 3. Measured and predicted SWRCs by regression (a – soil 1 and b – soil 2) and ANNs 
(c – soil1 and d – soil 2) methods for Dexter model.

First of all, the comparison between the regression and ANNs methods was 
performed based on IRMSE of all PTFs in both training and testing stages. All 
eight PTFs were created in both the Dexter and Van Genuchten models. With 
the exception of PTF4 in Dexter model that had better result by using regression 
method, ANNs got the best result in other PTFs in the training stage (Table 3). 
ANNs had the better results than the regression in testing stages of all PTFs, 
however the value of IRMSE was equal in both methods in PTF4 of the Dex-
ter model. Comparing these two methods regarding the AIC shows the relative 
superiority of ANNs. ANNs was found to be the most adequate for paramet-
ric PTFs in this study. The t-test comparison between the regression and ANNs 
methods was done based on the average of the IRMSE. The t-test results showed 
significant difference between the two methods in both the testing and the train-
ing stages. This is in accord with some reported results such as Pachepsky  
et al. [42] and Schaap et al. [51]. Therefore the performance of the regression 
and ANN PTFs in the smectitic soils are the same as in the case of the other 
soils. The fitted models of linear and nonlinear regressions and their coefficients 
were shown in Table 4.
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Impact of PSD and ASD Parameters on Improvement of PTFs VG Model

The addition of αp, Dp and Lp along with sand, clay and bulk density (SCBD) 
as estimators in PTF2 improved the accuracy and reliability of the VG model 
estimate and decreased AIC and IRMSE and increased R2 in both the training 
and testing stages (Table 3). Scientists have extensively used particle-size dis-
tribution data as predictors of soil hydraulic properties [64]. Millan et al. [37] 
showed that the fractal dimension of PSD is significantly positively correlated 
with clay content following a linear trend. Fractal geometry has been used as 
a tool to describe both the soil structure and the soil hydraulic properties [5]. 
Xu and Dong [65] tried to use fractal dimension of the PSD to determine the 
SWRC. Therefore, fractal parameters are closely related to the SWRC and can 
be suitable predictors of the above, even in smectitic soils.

As αa, Da and La were added to the list of inputs, a high level of accuracy 
and reliability of PTF3 was noticed, as a result, a decrease in AIC and IRMSE 
occurred. Micro-aggregate size distribution has rarely been used as predictors of 
soil hydraulic properties, especially in smectitic soils. In these soils, smectite has 
an incredible impact on the development of micro-aggregates [66]. Fractal geom-
etry has been used to describe aggregate size distributions [46]. Perfect and Kay 
[45], used fractal theory in the characterization of soil structure. Therefore, using 
the parameters of the fractal model of micro-aggregate size distribution to predict 
the VG model help us improve the performances of the PTFs in smectitic soils. 

To develop PTF4, the parameters of Fredlund et al. [21] PSD model were 
used to estimate the VG model. Using these as predictors, the accuracy and 
reliability of the estimation of the VG model significantly improved. However, 
their impact was not significant in the testing stage of the ANN method. The use 
of Fredlund et al. [21] PSD model parameters showed a relative improvement 
in comparison with the use of fractal parameters in PTF2 for the training stage 
according to the amount of the AIC. The PTF3 performed better than the PTF4, 
in which the parameters of Fredlund et al. [21] PSD model are used as inputs, in 
testing stage. So the ASD fractal parameters were better predictors than the frac-
tal parameters for the testing stage in the estimation of VG model (Fig. 2 a, b, c 
and d). Despite the high number of parameters of the Fredlund et al. [21] PSD 
model, the ASD fractal parameters had a great effect on the estimation of the 
SWRC for testing stage. Therefore, it could be suggested that the fractal theory 
is a valuable tool for the study of these soils. 

Dexter Model

Using αp, Dp and Lp along with the SCBD as estimators in PTF2 the accuracy 
and reliability of the Dexter model estimate significantly improved and the AIC 
and IRMSE decreased in both the training and testing stages of the regression 
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method (Table 3). This indicates that the fractal parameters of the PSD can 
improve the estimation of the Dexter model by this method. Arya and Paris [4] 
and Arya and Dierolf [3] presented models to predict water retention by using 
information on the PSD. Hwang and Powers [30] used Arya and Paris [4] model 
and nonlinear models of PSD to estimate the SWRC and concluded that the linear 
relationship between the PSD and the void size distribution (VSD) would not be 
appropriate for the multi-component particle systems such as soils. Their results 
suggested that the nonlinear relationship between the PSD and the VSD would be 
more appropriate and made better estimates of hydraulic properties. As a result, 
quantifying PSD by a fractal model and using its parameters to predict the Dexter 
model by regression method can be a successful method to improve the perfor-
mances of the PTFs in smectitic soils. In the ANN method, fractal parameters of 
the PSD had no significant effect on the estimation of the Dexter model. 

Using αa, Da and La along with the SCBD as estimators in PTF3 the accuracy 
and reliability of the Dexter model estimate significantly improved and the AIC 
and IRMSE decreased by using the regression method. However, the relative 
improvement was less than its value for PTF2. A good reason for using fractal 
models to investigate soil structure is to gain information on aggregation process-
es. We must recall that many physical properties of systems (e.g. soils) formed 
by aggregation depend on the scaling properties of the generated structures [38]. 
Fractal parameters of the ASD had no significant effect on the estimation of the 
Dexter model by the ANN method. 

When the parameters of Fredlund et al. [21] PSD model were used in PTF4 as 
inputs in addition to the SCBD to estimate the Dexter model, substantial improve-
ment occurred (Table 3). The AIC and IRMSE decreased significantly for both the 
testing and training stages. The relative improvement of the training and testing 
errors were 53.4 and 67%, respectively, this show substantial improvement. Com-
paring the PTFs shows that the parameters of Fredlund et al. [21] PSD model that 
was used in PTF4 which had the better result in comparison with PTFs in which 
fractal parameters of PSD were used (Table 3). The comparisons of measured and 
predicted values of the SWRC by the Dexter model for the two soils that were 
shown in Fig. 3 confirm the superiority of Fredlund et al. [21] PSD model param-
eters in the estimation of the SWRC by the regression method (Fig. 3; a and b). 
Fredlund et al. [21] PSD model is a four-parameter model, which has one parame-
ter more than the fractal parameters of the PSD model. Perhaps that is why, Fred-
lund et al. [21] PSD model is more accurate and reliable than fractal PSD model. 
It seems that the influences of soil texture [15] is more than that of soil structure 
[20] on the estimation of the Dexter model in smectitic soils. The Dexter model 
is based on pore space, and on the assumption of water retention within pores by 
capillary action [14]. Perhaps the superiority of PTFs in which PSD parameters 
were used in comparison with PTFs in which ASD parameters were used is 
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because of the high clay content that increases total porosity in smectitic soils.
The IME represents the positive and negative differences. Therefore, the 

IME can only be used to indicate over prediction (IME > 0) or under prediction 
(IME < 0) [56]. The IME values showed under prediction for most of the VG 
model estimates while, the over prediction was found for most of the Dexter 
model estimates (Table 3 and Fig. 2 and 3). 

In one by one estimation of the parameters of the Dexter model, using frac-
tal parameters as additional inputs resulted in the most accurate PTFs (data was 
not shown). However, when we use these parameters to simulate the Dexter 
model and the estimated curves were compared with measured curves, it was 
observed that these PTFs had low accuracy in comparison with PTFs that used 
Fredlund et al. [21] PSD parameters (Table 3 and Fig. 3 a, b, c and d). These 
results showed that, it was better to use an objective function that minimizes the 
difference between measured and estimated water contents, not the difference 
between measured and estimated parameters [39]. 

Comparing Predictability of Dexter and VG Models

Finally the comparison between the Dexter and the VG models was done 
based on the IRMSE and AIC in the training and testing stages. In each stage 
8 PTFs were developed, 4 PTFs by ANNs and 4 PTFs by regression. The VG 
model PTFs had better results in the training stage but, in the testing stage the 
Dexter model was the superior model and 7 PTFs had better performance with 
the Dexter model. The superiority of the VG model in the training stage was 
in the ANN method. Multiple linear regression cannot be used to predict van 
Genuchten parameters. Scheinost et al. [52] found it difficult to estimate the 
scaling parameters of α and n of the VG equation by using the regression meth-
od. T-test results showed significant difference between the two models in both 
the testing and training stages (data was not shown). 

The Dexter model is a five-parameter model, which has one parameter 
more than the van Genuchten model. Maybe that is why Dexter is more accurate 
than the van Genuchten model in the testing stage. 

The Dexter model is a bimodal model. It is probable that one of the factors 
behind the superiority of the predictability of this model is that the studied soils 
had bimodal pore size distribution. In well-aggregated natural soils the pore sys-
tem is frequently partitioned into intra-aggregates or textural pores and inter-ag-
gregates or structural pores [55]. Thus, the result of pore-size distributions is 
often bimodal [16]. Another factor proving the efficiency of this model is the 
number of the parameters of this model, as the accuracy of the experimental 
data of R2 increases with the rise in the number of parameters, the simplicity of 
usage of the model decreases [9]. 
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Unimodals like VG and BC are suitable for those soil types which have 
homogeneous pores.

CONCLUSIONS

1. This paper has displayed the development and validation of the PTFs for 
estimation of soil hydraulic parameters from basic soil properties, the PSD and 
ASD fractal parameters and Fredlund et al. [21] PSD model parameters using 
ANNs and regression methods and the comparison of the predictive capabilities 
of these methods using some evaluation criteria. The overall performance of 
ANNs has been better than that of regression. According to this study the ANNs 
method can be most accurate for parametric PTFs.

2. Aggregate size distribution affect many soil functions. Fractal parameters 
of the ASD has had a considerable impact on the estimation of the VG model. 
Fractal theory can be invoked to model the physics of Vertisols. This study shows 
that the fractal is a useful tool for the prediction of the SWRC in Vertisols.

3. Using parameters of Fredlund et al. [21] PSD model in the PTFs, in 
order to estimate the Dexter model, brings about better results in comparison 
with PTFs in which fractal parameters of PSD are used. PSDs are of paramount 
importance in understanding soil physical properties as they are used to estimate 
soil hydraulic properties.

4. The Dexter model is a bimodal model and the VG is a unimodal model. 
The result of the prediction of the Dexter model is better than those of the VG 
model. In well-aggregated natural soils, which often exhibit bimodal pore-size 
distribution, the parametric formulation of water retention proposed by the VG 
leads to the representation of water retention ignoring the transition between 
pore systems frequently indicated by the retention data. 

REFERENCES

  [1] A h m a d  N.: Vartisols. [In:] Pedogenesis and Soil Taxonomy. II. The Soil Orders (Eds. 
Wilding L.P., Smeck N.E., Hall G.F.). Development in Soil Science, Elsevier, 11B, 91, 1983.

  [2] A k a i k e  H.: Automatic Control, IEEE Trans., 19, 716, 1974.
  [3] Arya L.M., D i e r o l f  T.: Indirect Methods for Estimating the Hydraulic Properties of 

Unsaturated Soils. Univ. of California, Riverside, 115, 1992.
  [4] A r y a  L.M., P a r i s  J.F.: Soil Sci. Soc.Am.J., 45, 1023, 1981.
  [5] B a v e y e  P., P a r l a n g e  J.Y., S t e w a r t  B.A.(Eds.): Fractals in Soil Science. CRC 

Press, 1998.
  [6] B a y a t  H., E b r a h i m z a d e h  G., D a v a t g a r  N., S a f a r i  S., Z a r e  A b y a n e 

A.A.: Iranian J. Soil Research, 2012.
  [7] B a y a t  H., N e y s h a b o u r i  M., M o h a m m a d i  K., N a r i m a n - Z a d e h  N.: 

Pedosphere, 21, 107, 2011.
  [8] B a y a t  H., N e y s h a b u r i  M., M o h a m m a d i  K., N a r i m a n - Z a d e h  N., I r a n -

n e j a d  M., G r e g o r y  A.S.: Computers and Electronics in Agriculture, 92, 92, 2013.



126 G.E. ZADEH, H. BAYAT

  [9] B u c h a n  G.D., G r e w a l  K., R o b s o n  A.: Soil Sci. Soc. Am.J., 57, 901, 1993.
[10] C l a r k  L.A., P r e g i b o n  D.: Tree-based Models. [In:] Statistical Models. (Eds. Cham-

bers S.J.M., Hastie T.J.). New York, Chapman and Hall, 377, 1992.
[11] D a s  M., Ve r m a  O.: J. Agric. Physics, 11, 21, 2011.
[12] D a v a t g a r  N., K a v o o s i  M., A l i n i a  M.H., P a y k a n  M.: JWSS - Isfahan Universi-

ty of Technology, 9, 71, 2006.
[13] D e  G e n n e s  P.: Physics of Disordered Materials. 227, 1985.
[14] D e x t e r  A.R., C z y ż  E., R i c h a r d  G., R e s z k o w s k a  A.: Geoderma, 143, 243, 2008.
[15] D e x t e r  A.R., C z y ż  E., G a ţ e  O.P.: Soil a. Till. Res., 79, 185, 2004.
[16] D u r n e r  W.: Water Res. Res., 30, 211, 1994.
[17] E f r o n  B., T i b s h i r a n i  R.J.: An Introduction to the Bootstrop. London, Chapman & 

Hall, 57, 1993.
[18] F a r l o w  S.J.: The Am. Statistician, 35, 210, 1981.
[19] F i l g u e i r a  R.R., F o u r n i e r  L.L., C e r i s o l a  C.I., G e l a t i  P., G a r c í a  M.G.: 

Geoderma, 134, 327, 2006.
[20] F l o r i a n  S.C., H o r n  R.: Vadose Zone J., 4, 602, 2005.
[21] F r e d l u n d  M.D., F r e d l u n d  M.D., W i l s o n  G.W.: Canad. Geotech. J., 37, 817, 2000.
[22] F y l s t r a  D., L a s d o n  L., Wa t s o n  J., Wa r e n  A.: Interfaces, 28, 29, 1998.
[23] G e e  G.W., O r  D.: Methods of Soil Analysis. Physical Methods. 5, 255, 2002.
[24] G h a n b a r i a n - A l a v i j e h  B., L i a g h a t  A., H u a n g  G.H., Va n  G e n u c h t e n 

M.T.: Pedosphere, 20, 456, 2010.
[25] H a v e r k a m p  R.T., P a r l a n g e  J.Y.: Soil Sci., 142, 325, 1986.
[26] H i l l e l  D.: Environmental Soil Physics: Fundamentals, Applications, and Environmental 

Considerations. Academic Press, 1998.
[27] H o d n e t t  M., T o m a s e l l a  J.: Geoderma, 108, 155, 2002.
[28] H o r n  R.: Academic Press, London, 336, 1994.
[29] H u a n g  G.H., Z h a n g  R.D., H u a n g  Q.Z.: Pedosphere, 16, 137, 2006.
[30] H w a n g  S.I., P o w e r s  S.E.: Soil Sci. Soc. Am. J., 67, 1103, 2003.
[31] J a r v i s  N., B r o w n  C., G r a n i t z a  E.: Agric. Water Manag., 44, 247, 2000.
[32] K e s h a v a r z i  A., S a r m a d i a n  F., Z o l f a g h a r i  A., P e z e s h k i  P.: Int. J. Aric. 

Res., 7, 166, 2012.
[33] K h o d a v e r d i l o o  H., H o m a e e  M., v a n  G e n u c h t e n  M.T., Dashtaki S.G.:  

J. Hydrol., 399, 93, 2011.
[34] L e i j  F.J., R u s s e l l  W.B., L e s c h  S.M.: Ground Water, 35, 848, 1997.
[35] M a n d e l b r o t  B.B.: The Fractal Geometry of Nature. New York, WH Freeman & Co., 1983.
[36] M a n y a m e  C., M o r g a n  C., H e i l m a n  J., F a t o n d j i  D., G e r a r d  B., P a y n e 

W.: Geoderma, 141, 407, 2007.
[37] M i l l a n  H., G o n z a l e z - P o s a d a  M., A g u i l a r  M., Domınguez J., C e s p e d e s  L.: 

Geoderma, 117, 117, 2003.
[38] M i l l á n  H., G o n z á l e z - P o s a d a  M., M o r i l l a  A., Pérez E.: Geoderma, 138, 185, 

2007.
[39] M i n a s n y  B., M c B r a t n e y  A.: Soil Sci. Soc.Am. J., 66, 352, 2002.
[40] M o s a d d e g h i  M.R., M a h b o u b i  A.A.: Arch. Agron.Soil Sci., 57, 327, 2011.
[41] O r  D., W r a i t h  J.M.: Soil Water Content and Water Potential Relationships. [In:] Soil 

Physics Companion (Ed. Warrick A.W.). CRC Press, Boca Raton, Florida, 49, 2002.
[42] P a c h e p s k y  Y.A., T i m l i n  D., Va r a l l y a y  G.: Soil Sci. Soc. Am. J., 60, 727, 1996.
[43] P a r k e r  J., A m o s  D., Z e l a z n y  L.: Soil Sci. Soc. Am. J., 46, 450, 1982.
[44] P a t i l  N., R a j p u t  G.: J. Irrig. Drainage Eng., 135, 286, 2009.



127PEDOTRANSFER FUNCTIONS

[45] P e r f e c t  E., K a y  B.: Soil Sci. Soc.Am. J., 55, 1552, 1991.
[46] P e r f e c t  E., R a s i a h  V., K a y  B.: Soil Sci. Soc.Am. J., 56, 1407, 1992.
[47] P e r r i e r  E., B i r d  N.: Scaling Methods in Soil Physics, 1, 2003.
[48] P e r r i e r  E., B i r d  N.: Soil a.Till. Res., 64, 91, 2002.
[49] P e r r i e r  E., B i r d  N., R i e u  M.: Geoderma, 88, 137, 1999.
[50] R i e u  M., S p o s i t o  G.: Soil Sci. Soc. Am. J., 55, 1231, 1991.
[51] S c h a a p  M.G., L e i j  F.J., v a n  G e n u c h t e n  M.T.: Soil Sci. Soc.Am. J., 62, 847, 1998.
[52] S c h e i n o s t  A., S i n o w s k i  W., A u e r s w a l d  K.: Adv. GeoEcology, 30, 23, 1997.
[53] S k a g g s  T., A r y a  L., S h o u s e  P., M o h a n t y  B.: Soil Sci. Soc.Am. J., 65, 1038, 

2001.
[54] T a b o a d a  M.A.: College on Soil Physics, Trieste, 2003.
[55] T a m a r i  S.: Soil Technology, 7, 57, 1994.
[56] T i e t j e  O., T a p k e n h i n r i c h s  M.: Soil Sci. Soc. Am. J., 57, 1088, 1993.
[57] T i t t o n e l l  P., S h e p h e r d  K.D., Va n l a u w e  B., G i l l e r  K.E.: Agric.Ecosyst. Envi-

ron., 123, 137, 2008.
[58] T o l e d o  P.G., N o v y  R.A., D a v i s  H.T., S c r i v e n  L.: Soil Sci. Soc. Am. J., 54, 673, 

1990.
[59] T o m a s e l l a  J., H o d n e t t  M.G., R o s s a t o  L.: 2000.
[60] T y l e r  S.W., W h e a t c r a f t  S.W.: Water Resour. Res., 26, 1047, 1990.
[61] U n g a r o  F., C a l z o l a r i  C., B u s o n i  E.: Geoderma, 124, 293, 2005.
[62] v a n  G e n u c h t e n  M.T.: Soil Sci. Soc. Am. J., 44, 892, 1980.
[63] Ve l d e  B.: Geoderma, 99, 261, 2001.
[64] W ö s t e n  J.H.M., P a c h e p s k y  Y.A., R a w l s  W.J.: J. Hydrol., 251, 123, 2001.
[65] X u  Y., D o n g  P.: Chaos, Solitons a. Fractals, 19, 327, 2004.
[66] Z h a n g  B., H o r n  R.: Geoderma, 99, 123, 2001.

 ZDOLNOŚĆ FUNKCJI PEDOTRANSFEROWYCH DO SYMULOWANIA 
ZACHOWANIA GLEB SMEKTYTOWYCH W MODELACH KRZYWEJ 

RETENCJI WODNEJ GLEB

W celu kształtowania przepływów w warunkach nienasyconych możliwe jest użycie właści-
wości hydraulicznych, których bezpośrednie uzyskanie jest kosztowne i czasochłonne z uwagi na 
wysoką zmienność i złożoność systemów glebowych. Funkcje pedotrasferu w glebach smektyto-
wych nie zostały obszernie zbadane. Co więcej, użyteczność parametrów fraktalnych w przewi-
dywaniu krzywej retencji wodnej gleb nie zostało zbadane na przedmiotowych glebach. W niniej-
szym badaniu ustalono funkcje pedotransferu w celu określenia parametów modelu van Genuchte-
na (VG) oraz modelu Dextera przy użyciu metody regresyjnej oraz metody sztucznych sieci neuro-
nowych. 69 próbek zebranych zostało w prowincji Guilan w Iranie. Model fraktalny i niefraktalny 
zostały dopasowane do rozkładu wielkości cząsteczek i rozkładu agregatowego (ASD) oraz obli-
czono ich parametry. W celu stworzenia funkcji pedotransferu, parametry modeli PSD i ASD użyte 
zostały jako estymatory. Zestawienie wyników uzyskanych przy pomocy dwóch modeli Dextera 
oraz VG wykazało nadrzędność modelu Dextera w odniesieniu do gleb smektytowych. Wyniki 
pokazały odpowiednio przewagę parametrów modelu PSD Fredlund’a i współautorów oraz para-
metrów fraktalnych ASD w ocenie modeli krzywej retencji wodnej gleb (SWRC) Dextera i VG. 
Uzyskany rezultat może być związany z wyższą dokładnością modelu PSD Fredlund’a w opi-
sie danych PSD w glebach gliniastych. Jednakże, większa liczba parametrów uzyskanych z tego 
modelu w porównaniu z liczbą parametrów modelu fraktalnego może stanowić kolejny powód.


