The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan Kurek, Włodzimierz Mikulski

Abstract


If \((M,g)\) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism \(TM\mathrel{\tilde=}T^*M\) given by \(v\to g(v,-)\) between the tangent \(TM\) and the cotangent \(T^*M\) bundles of \(M\). In the present note, we generalize this isomorphism to the one \(T^{(r)}M\mathrel{\tilde=} T^{r*}M\) between the \(r\)-th order vector tangent \(T^{(r)}M=(J^r(M,R)_0)^*\) and the \(r\)-th order cotangent \(T^{r*}M=J^r(M,R)_0\) bundles of \(M\). Next, we describe all base preserving  vector bundle maps \(C_M(g):T^{(r)}M\to T^{r*}M\) depending on a Riemannian metric \(g\) in terms of natural (in \(g\)) tensor fields on \(M\).

Full Text:

PDF

References


Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631–645.

Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley- Interscience, New York–London, 1963.

Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Defferential Geometry, Springer-Verlag, Berlin, 1993.

Kolář, I., Vosmanská, G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pĕst. mat. 114 (1989), 181–186.

Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58, no. 1 (1993), 29–35.

Mikulski, W. M., Some natural operators on vector fields, Rend Math. Appl (7) 12, no. 3 (1992), 783–803.

Nijenhuis, A., Natural bundles and their general properties Diff. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), 317–334.

Paluszny, M., Zajtz, A., Foundation of the Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.




DOI: http://dx.doi.org/10.17951/a.2014.68.2.59
Date of publication: 2015-05-23 16:29:45
Date of submission: 2015-05-09 13:38:42


Statistics


Total abstract view - 673
Downloads (from 2020-06-17) - PDF - 569

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica