On compactness and connectedness of the paratingent

Wojciech Zygmunt

Abstract


In this note we shall prove that for a continuous function \(\varphi : \Delta\to\mathbb{R}^n\), where \(\Delta\subset\mathbb{R}\),  the paratingent of \(\varphi\) at \(a\in\Delta\) is a non-empty and compact set in \(\mathbb{R}^n\) if and only if \(\varphi\) satisfies Lipschitz condition in a neighbourhood of \(a\). Moreover, in this case the paratingent is a connected set.

Full Text:

PDF

References


Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990.

Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicite des solutions des systemes d’equations differentielles ordinaires et des equations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49-106.

Bouligand, G., Introduction a la geometrie infinitesimale directe, Vuibert, Paris, 1932.

Choquet, G., Outils topologiques et metriques de l’analyse mathematique, Centre de Documentation Univ., Course redige par C. Mayer, Paris, 1969.

Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67-74.

Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335-1368.




DOI: http://dx.doi.org/10.17951/a.2016.70.2.91
Date of publication: 2016-12-24 22:42:02
Date of submission: 2016-12-23 22:07:12


Statistics


Total abstract view - 637
Downloads (from 2020-06-17) - PDF - 444

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Wojciech Zygmunt