Ginsenoside content in suspension cultures of Panax quinquefolium L. cultivated in shake flasksand stirred-tank bioreactor

Ewa Kochan, Sylwia Caban, Grażyna Szymańska, Piotr Szymczyk, Anna Lipert, Paweł Kwiatkowski, Monika Sienkiewicz

Abstract


Plant suspension cultures are described as a source for the acquisition of medicinal secondary metabolites which in the future may become an alternative to traditional raw materials. This study demonstrates that the cell cultures of one of the ginseng species – Panax quinquefolium L. synthesize ginsenosides, which are triterpene saponins having a multidirectional pharmacological effects. Tested suspension cultures were run on a small scale in the shake flasksand in scale up of the process in a 10-liter stirred tank. In the shake flasks,the highest biomass yield (2.28 gl-1 for dry and 33.99 gl-1 for fresh weight) was reached on day 30 of culture, and the highest content of saponins (2.66 mg g -1 dw) was determined on day 28 of culture. In the bioreactor, nearly 2.67 and 3-fold increase of respectively dry and fresh biomass was recorded in relation to the inoculum. Large-scale cultures synthesized protopanaxatriol derivatives such as Rg1 and Re ginsenosides, however, no saponins belonging to the protopanaxadiol derivatives were reported.


Keywords


Panax quinquefolium L. suspension culture, ginsenosides, bioreactor

Full Text:

PDF

References


Arias J.P., Zapata K., Rojano B., Peñuela M., Arias M. 2017. Plant cell suspension culture of Thevetia peruviana (Pers.) K. Schum. in shake flask and stirred tank reactor scale: A comparative study. African J. Biotechnol. 16(52): 2355–2363, 27, DOI: 10.5897/AJB2017.16281.

Behbahani M., Shanehsazzadeh M., Hessami M.J. 2011. Optimization of callus and cell suspension cultures of Baringtonia racemosa (Lecythidaceae family) for lycopene production. Sci. Agric. 68 (1): 69–76.

Biswas T., Ajayakumar P.V., Mathur A.K., Mathur A. 2015 Solvent-based extraction optimization for efficient ultrasonication-assisted ginsenoside recovery from Panax quinquefolius and P. sikkimensis cell suspension lines. Nat. Prod. Res. 29(13): 1256–63. doi: 10.1080/14786419.2015.1024119.

Choi D.S., Cano A.M.H., Willis, L.B., Cho C., Schoenheit J., Boccazzi P., Sambanthamurthi R., Sinskey A.J., Chokyun R. 2008. Effect of agitation and aeration on yield optimization of oil palm suspension culture. J. Oil Palm Res. 1: 23–34.

Demidova E.V., Reshetnyak O.V., Oreshnikov A.V., Nosov A.M. 2006 Growth and biosynthetic characteristics of ginseng (Panax japonicus var. repens) deep-tank cell culture in bioreactors. Russian J. Plant Physiol. 53 (1): 134–140.

Doran P. M. 1993. Design of Reactors for Plant Cells and Organs, [in:] Advances in Biochemical Engineering Biotechnology, 48, Managing Editor: A. Fiechter Springer-Verlag Berlin Heidelberg, 115.

Georgiev M. I., Weber J., Maciuk A. 2009. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 83: 809-823.

Gorret N., bin Rosli S.K., Oppenheim S.F., Willis L.B., Lessard P.A., Rha C., Sinskey A.J. 2004. Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production. J. Biotechnol. 2004 18;108(3): 253–63.

H ussain M.S., Fareed S., Ansari S., Rahman M.A., Ahmad I.Z., Saeed M. 2012. Current approaches toward production of secondary plant metabolites J. Pharm. Bioallied Sci. 4(1): 10–20. doi: 10.4103/0975-7406.92725.

Kochan E., Chmiel A. 2011. Dynamics of ginsenoside biosynthesis in suspension culture of Panax quinquefolium. Acta Physiol. Plant. 33(3): 911–915.

Kochkin D.V., Kachala V.V., Shashkov A.S., Chizhov A.O., Chirva V.Y., Nosov A.M. 2013 Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. repens. Russian J. Plant Physiol. 64(5): 649–656.

Liu S., Zhong J.J. 1998 Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochem. 33(1): 69–74.

Lloyd G., McCown B. 1980. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Prop. Soc. Proc. 30: 421–427.

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497.

Paek K.Y. 2014. Production of Biomass and Bioactive Compounds Using Bioreactor Technology, part I, II, [in:] H.N. Murthy, J.J. Zhong, (Eds.) Springer, Dordrecht–Heidelberg–New York–London © Springer Science+Business Media Dordrecht.

Phytochemistry. 93: 18–26. doi: 10.1016/j.phytochem.2013.03.021.

PN-89-C-04537/02 Determination of dissolved orthophosphates by colorimetric method with stannous chloride as reductant. 1989. Wydawnictwa Normalizacyjne “ALFA”.

PN-C-04576-4 Determination of ammonium nitrogen by Nessler method. 1994. Wydawnictwa Normalizacyjne “ALFA”.

Rose R., Rose C.L., Omi R.S., Forry K.R., Durall D.M., Bigg W.L. 1991. Starch determination by perchloric acid vs. enzymes: evaluating the accuracy and precision of six colorimetric methods. J. Agric. Food Chem. 39: 2–11.

Schmidt M.E., Heim S., Wylegalla C., Helmbrecht C., Wagner K.G. 1992. Characterization of phosphate uptake by suspension cultured Catharanthus roseus cells. J. Plant Physiol. 140, 2: 179–184.

Shin B.K., Kwon S.W., Park J.H. 2015. Chemical diversity of ginseng saponins from Panax ginseng. J. Ginseng Res. 39(4): 287–298. 10. doi:10.1016/j.jgr.2014.12.005.

Sivanandhan G., Selvaraj N., Ganapathi A., Manickavasagam M. 2014. Enhanced biosynthesis of withanolides by elicitation and precursor feeding in cell suspension culture of Withania somnifera (L.) Dunal in shake-flask culture and bioreactor. PLOS ONE, 9 (8) e104005.

Smetanska I. 2008. Production of Secondary Metabolites Using Plant Cell Cultures, Adv. Biochem. Engin. Biotechnol. 111: 187–228 DOI 10.1007/10_2008_103©Springer-Verlag Berlin–Heidelberg.

Thanh N.T., Murthy H.N., Yu K.W., Jeong C.S.. Hahn E.J., Paek K.Y. 2006. Effect of oxygen supply on cell growth and saponin production in bioreactor cultures of Panax ginseng. J. Plant Physiol. 163(12): 1337–1.




DOI: http://dx.doi.org/10.17951/c.2017.72.1.15-26
Date of publication: 2018-07-16 14:19:11
Date of submission: 2018-01-31 18:11:36


Statistics


Total abstract view - 1367
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Ewa Kochan, Sylwia Caban, Grażyna Szymańska, Piotr Szymczyk, Anna Lipert, Paweł Kwiatkowski, Monika Sienkiewicz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.